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Abstract

We study the problem of policy optimization (PO) with linear temporal logic (LTL)
constraints. The language of LTL allows flexible description of tasks that may be
unnatural to encode as a scalar cost function. We consider LTL-constrained PO as
a systematic framework, decoupling task specification from policy selection, and
as an alternative to the standard of cost shaping. With access to a generative model,
we develop a model-based approach that enjoys a sample complexity analysis for
guaranteeing both task satisfaction and cost optimality (through a reduction to a
reachability problem). Empirically, our algorithm can achieve strong performance
even in low-sample regimes.

1 Introduction

The standard reinforcement learning (RL) framework aims to find a policy that minimizes a cost
function. The premise is that this scalar cost function can completely capture the task specification
(known as the “reward hypothesis” [55, 53]). To date, almost all theoretical understanding of RL is
focused on this cost minimization setting (e.g., [62, 32, 31, 57, 45, 9, 24, 19, 10, 3, 4, 40, 47, 48]).

However, capturing real-world task specifications using scalar costs can be challenging. For one, real-
world tasks often consist of objectives that are required, as well as those that are merely desirable. By
combining these objectives into scalar costs, one erases the distinction between these two categories
of tasks. Also, there is recent theoretical evidence that certain tasks are simply not reducible to scalar
costs [1] (see Section 2). In practice, one circumvents these challenges using heuristics such as
adding “breadcrumbs” [54]. However, such heuristics can lead to catastrophic failures in which the
learning agent ends up exploiting the cost function in an unanticipated way [49, 61, 28, 68, 44].

In response to these limitations, recent work has studied alternative RL paradigms that use Linear
Temporal Logic (LTL) to specify tasks (see Section 7). LTL is a modeling language that can express
desired characteristics of future paths of the system [11]. The notation is precise enough to allow
the specification of both the required and desired behaviors; the cost minimization is left only to
discriminate between which LTL-satisfying policy is “best”. This ensures that the main objective —
e.g., time, energy, or effort — does not have any relation to the task and is easily interpretable.

Existing work on RL with LTL constraints tends to make highly restrictive assumptions. Examples
include (i) known mixing time of the optimal policy [23], (ii) the assumption that every policy
satisfies the task eventually [64], or (iii) known optimal discount factor [26], all of which assist in
task satisfaction verification. These assumptions have complex interactions with the environment,
making them impractical if not impossible to calculate. The situation is made more complex by
recent theoretical results [66, 7] that show that there are LTL tasks that are not PAC-MDP-learnable.

In this paper, we address these limitations through a novel policy optimization framework for RL
under LTL constraints. Our approach relies on two assumptions that are significantly less restrictive
than those in prior work and circumvent the negative results on RL-modulo-LTL: the availability
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of a generative model of the environment and a lower bound on the transition probabilities in the
underlying MDP. Under these assumptions, we derive a learning algorithm based on a reduction
to a reachability problem. The reduction in our method can be instantiated with several planning
procedures that handle unknown dynamics [12, 46]. We show that our algorithm offers strong
constraint satisfaction guarantees and give a rigorous sample complexity analysis of the algorithm.

In summary, the contributions of this paper are:

1. We provide a novel approach to LTL-constrained RL that requires significantly fewer assumptions,
and offers stronger guarantees, than previous work.

2. We develop several new theoretical tools for our analysis. These may be of independent interest.
3. We empirically validate using both infinite- and indefinite-horizon problems, and with composite

specifications such as collecting items while avoiding enemies. We find that our method enjoys
strong performance, often requiring many fewer samples than our worst-case guarantees.

2 Motivating Examples

We examine two examples where standard cost engineering cannot capture the task (Figure 1). We
consider the undiscounted setting here. See [41, 1] for difficult examples for the discounted setting.

Example 1 (Infinite Loop). A robot is given the task of perpetually walking between the coffee
room and the office (Figure 1 (Left)). To achieve this behavior, both the policy and cost-function
must be history-dependent. These can be made Markovian through proper state-space augmentation
and has been studied in hierarchical reinforcement learning or learning with options [38, 56]. Options
engineering is laborious and requires expertise. Nevertheless, without the appropriate augmentation,
any cost-optimal policy of a Markovian cost function will fail at the task. We will see in Section 3
that any LTL expression comes with automatic state-space augmentation, requiring no expert input.

Example 2 (Safe Delivery). The goal is to maximize the probability of safely sending a packet from
one computer to another (Figure 1 (Right)). Policy 1 leads to a hacker sniffing packets but passing
them through, and is unsafe. Policy 2 leads to a hacker stealing packets with probability p > 0, and is
safe with probability 1− p, and is the policy that satisfies the task. For cost engineering, let R and
S be the recurring costs of the received and stolen states. For the two policies, the avg. costs are
g1 = R and g2 = pS + (1− p)R. Strangely, we must set R > S in order for g2 < g1. Fortunately,
optimizing any cost function constrained to satisfying the LTL specification does not suffer from this
counter intuitive behavior as only policy 2 has any chance of satisfying the LTL expression.

1
2

p
1-p

R

S

Figure 1: (Left) Infinite Loop. The robot must perpetually walk between the coffee room and office.
Without proper state-space augmentation, a markovian cost function cannot capture this task. (Right)
Safe Delivery. The specification is to deliver a packet without being interfered. Policy 2 should be
chosen. One would need to penalize receiving the packet significantly over having it stolen: R > S.

3 Background and Problem Formulation

We now formulate the problem. An atomic proposition is a variable that takes on a truth value. An
alphabet over a set of atomic propositions AP is given by Σ = 2AP. For example, if AP = {a, b}
then Σ = {{}, {a}, {b}, {a, b}}. ∆(X) represents the set of probability distributions over a set X .

3.1 MDPs with Labelled State Spaces

We assume that the environment follows the finite Markov Decision Process (MDP) framework given
by the tupleM = (SM,AM, PM, CM, dM0 , LM) consisting of a finite state space SM, a finite
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action space AM, an unknown transition function PM : SM × AM → ∆(SM), a cost function
C : SM×AM → ∆([cmin, cmax]), an initial state distribution d0 ∈ ∆(SM), and a labelling function
LM : SM → Σ. We take AM(s) to be the set of available actions in state s. Unlike traditional
MDPs,M has a labeling function LM which returns the atomic propositions that are true in that
state. A run inM is a sequence of states τ = (s0, s1, . . .) reached through successive transitions.

3.2 Linear Temporal Logic (LTL), Synchronization with MDPs, and Satisfaction

Now we give some basic background on LTL. For a more comprehensive overview, see [11].
Definition 3.1 (LTL Specification, φ). An LTL specification φ is the entire description of the
task, including both desired and required behaviors, and is constructed from a composition of
atomic propositions, including logical connectives: not (¬), and (&), and implies (→); and temporal
operators: next (X), repeatedly/always/globally (G), eventually (F ), and until (U ).

Examples. Consider again the examples in Section 2. For AP = {a, b}, some basic task specifica-
tions include safety (G¬a), reachability (Fa), stability (FGa), response (a → Fb), and progress
(a & XFb). For the Infinite Loop example (Figure 1 (Left)), AP = {o, c} indicating the label of the
grid location of our agent (office, coffee, or neither). The specification is “GF (o & XFc)” meaning
“go between office and coffee forever”, and is a combination of safety, reachability, and progress.
For the Safe Delivery example (Figure 1 (Right)), AP = {s} indicating the safety of a state. The
specification is “Gs” meaning “always be safe”.

LTL Satisfaction: Synchronizing MDP with LTL. By synchronizing an MDP with an LTL formula,
we can easily check if a run in the MDP satisfies a specification φ. In particular, it is possible to
model the progression of satisfying φ through a specialized automaton, an LDBA Bφ [52], defined
below. More details for constructing LDBAs are in [25, 11, 35]. We drop φ from Bφ for brevity.
Definition 3.2. (Limit Deterministic Büchi Automaton, LDBA [52]) An LDBA is a tuple B =
(SB,Σ ∪ AB, P

B,SB∗, sB0 ) consisting of (i) a finite set of states SB, (ii) a finite alphabet Σ = 2AP,
AB is a set of indexed jump transitions (iii) a transition function PB : SB × (Σ ∪ AB)→ 2S

B
, (iv)

accepting states SB∗ ⊆ SB, and (v) initial state sB0 . There exists a mutually exclusive partitioning
of SB = SBD ∪ SBN such that SB∗ ⊆ SBD, and for s ∈ SB

D, a ∈ Σ then PB(s, a) ⊆ SBD and
|PB(s, a)| = 1, deterministic. AB(s) is only (possibly) non-empty for s ∈ SBD and allows B to
transition without reading an AP. A path σ = (s0, s1, . . .) is a sequence of states in B reached through
successive transitions. B accepts a path σ if there exists some state s ∈ SB∗ in the path that is visited
infinitely often.

We can now construct a synchronized product MDP from the interaction ofM and B.
Definition 3.3. (Product MDP) The product MDP XM,B = (S,A, P, C, d0, L,S∗) is an MDP
with S = SM × SB, A = AM ∪ AB, C((m, b), a) = CM(m, a) if a ∈ AM(m) otherwise 0,
d0 = {(m, b)|m ∈ dM0 , b ∈ PB(sB0 , L

M(m))}, L((m, b)) = LM(m), S∗ = {(·, b) ∈ S|b ∈ SB∗}
accepting states, and P : S ×A → ∆(S) taking the form:

P ((m, b), a, (m′, b′)) =


PM(m, a,m′) a ∈ AM(m), b′ ∈ PB(b, L(m′))

1, a ∈ AB(b), b′ ∈ PB(b, a),m = m′

0, otherwise

A run τ = (s0, s1, . . .) = ((m0, b0), (m1, b1), . . .) in X is accepting (accepted) if (b0, b1, . . .), the
projection onto B, is accepted. Equivalently, some s ∈ S∗ in X is visited infinitely often. This leads
us to the following definition of LTL satisfaction:
Definition 3.4 (Satisfaction, τ |= φ). A run τ in X satisfies φ, denoted τ |= φ, if it is accepted.
Definition 3.5. (Satisfaction, π |= φ) A policy π ∈ Π satisfies φ with probability P[π |= φ] =
Eτ∼TP

π
[1τ |=φ]. Here, 1X is an indicator variable which is 1 when X is true, otherwise 0. TP

π is the
set of trajectories induced by π in X with transition function P .

3.3 Problem Formulation

Our goal is to find a policy that simultaneously satisfies a given LTL specification φ with highest
probability (probability-optimal) and is also optimal w.r.t. the cost function of the MDP. We consider
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(stochastic) Markovian policies Π, and define the set of all probability-optimal policies as Πmax =
{argmaxπ′∈Π P[π′ |= φ]}. We first define the gain g (average-cost) and transient cost J :

gPπ ≡Eτ∼TP
π

[
lim

T→∞

1

T

T−1∑
t=0

C(st, π(st))
∣∣∣∣τ |= φ

]
, JP

π ≡ Eτ∼TP
π

[
κτ∑
t=0

C(st, π(st))
∣∣∣∣τ |= φ

]
(1)

where κτ is the first (hitting) time the trajectory τ leaves the transient states induced by π. When P
is clear from context, we abbreviate gPπ and JP

π by gπ and Jπ , respectively.

Gain optimality for infinite horizon problems has a long history in RL [12, 46]. Complementary to
gain optimality, we consider a hybrid objective including the transient cost. For any λ ≥ 0, we define
the optimal policy as the probability-optimal policy with minimum combined cost:

π∗
λ ≡ arg min

π∈Πmax

Jπ + λgπ = arg min
π∈Πmax

(Jπ + λgπ)P[π |= φ] (≡ V P
π,λ). (OPT)

In other words, probability-optimal policies are those that satisfy the entirety of the task, both desired
and required behaviors, where V P

π,λ ≡ (Jπ + λgπ)P[π |= φ] is the normalized value function1,
corresponding to a notion of energy or effort required, with λ representing the tradeoff between gain
and transient cost. We will often omit the dependence of V on P and λ for brevity.

Example. Consider the Safe Delivery example (Figure 1 (Right)). For policy 1, P[1 |= φ] = 0 and so
1 ̸∈ Πmax. Let policy 2 be a cost 1 timestep before stolen or receipt, then g2 = R is the (conditional)
gain, J2 = 1 is the (conditional) transient costs, P[2 |= φ] = 1− p, and V2 = (1 + λR)(1− p).
Problem 1 (Planning with Generative Model/Simulator). Suppose access to a generative model of the
true dynamics P from which we can sample transitions s′ ∼ P (s, a) for any state-action pair (s, a) ∈
S ×A.2 With probability 1− δ, for some errors ϵφ, ϵV > 0, find a policy π ∈ Π that simultaneously
has the following properties: (i) |P[π |= φ]− P[π∗ |= φ]| < ϵφ (ii) |Vπ − Vπ∗ | < ϵV .

4 Approach

4.1 End Components & Accepting Maximal End Components

Our analysis relies on the idea of an end component: a recurrent, inescapable set of states when
restricted to a certain action set. It is a sub-MDP of a larger MDP that is probabilistically closed.

Definition 4.1. (End Component, EC/MEC/AMEC [11]) Consider MDP (S,A, P, C, d0, L,S∗). An
end component (E,AE) is a set of states E ⊆ S and acceptable actions AE(s) ⊆ A(s) (where
s ∈ E) such that ∀(s, a) ∈ E × AE then Post(s, a) = {s′|P (s, a, s′) > 0} ⊆ E. Furthermore,
(E,AE) is strongly connected: any two states in E is reachable from one another by means of actions
in AE . We say an end component (E,AE) is maximal (MEC) if it is not contained within a larger
end component (E′,AE′), ie. ∄(E′,AE′) EC where E ⊆ E′,AE(s) ⊆ AE′(s) for each s ∈ A. A
MEC (E,AE) is an accepting MEC (AMEC) if it contains an accepting state, ∃s ∈ E s.t. s ∈ S∗.

4.2 High-Level Intuition

The description of our approach, LTL Constrained Planning (LCP), in Section 4.4 is rather technical
in order to yield theoretical guarantees. We thus first summarize the high-level intuitions.

Solution Decomposition. Consider the accepting states s∗1, s
∗
2 in Figure 2 (Left), which are the states

we need to visit infinitely often to satisfy the specification. First, let us identify the accepting maximal
end components (AMECs) of s∗1 and s∗2: the state sets A1 and A2 (resp.) and their corresponding
action sets AA1

and AA2
(the blue arrows in A1 and A2). Note that these AMECs do not include the

yellow action in Figure 2 (Left), which has a chance of leaving A1 and getting stuck in A3.

Our solution first runs a transient policy until reaching A1 or A2, and then switches to a (probability-
optimal) recurrent policy that stays within A1 or A2 (resp.) while visiting s∗1 or s∗2 (resp.) infinitely
often. A probability-optimal recurrent policy will select actions in AA1 and AA2 to visit s∗1, s

∗
2

1Normalized objectives are not unusual in RL, e.g. in discounted settings, multiplication by (1− γ)
2The use of a generative model is increasingly common in RL [24, 40, 3, 58], and is applicable in many

settings where such a generative model is readily available as a simulator (e.g., [21]).
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(a) Abstract Diagram

s*

(b) Example, Infinite Loop

s*

(c) Example, Safe Delivery

Figure 2: Product MDP diagrams. (Left) The goal of LTL Constrained Policy Optimization can be
reduced to a reachability problem. We want to reach A1 or A2 from s0 and then follow the blue
arrows with some distribution. A3 with the blue arrows is a rejecting end component because it does
not contain an accepting state s∗. For β < 1 , the yellow action is not in the allowable action set
of A1 because there is a risk of entering A3, strictly decreasing our probability of LTL satisfaction.
(Center) Example for Infinite Loop, Figure 1 Left. (Right) Example for Safe Delivery, Figure 1 Right.

infinitely often (e.g., the uniform policies with the AMECs (A1,AA1
) and (A2,AA2

)). Finding a
transient policy from s0 to A1, A2 can be viewed as a reachability problem, which we can solve via a
Stochastic Shortest Path (SSP) problem and leverage recent literature [58, 34].

Cost Optimality. As stated in OPT, the goal is to find a cost-optimal policy within the set of
probability-optimal policies. For instance, the uniform policy over AA1

and AA2
(the blue arrows

in Figure 2 (Left) is probability optimal, but may not be cost optimal. Similarly, the unconstrained
cost-optimal policy may not be probability optimal. Consider just A1 for the moment. Suppose
the cost of the arrows between the white nodes is 4 while the other costs are 7. Then the uniform
(probability-optimal) policy in A1 over AA1 has cost 1

2

(
4+4
2

)
+ 1

2

(
7+7+4

3

)
= 5. The gain-optimal

policy that deterministically selects the actions between the white nodes π̃ has cost
(
4+4
2

)
= 4,

but is not probability optimal. If we perturb π̃ to make it even slightly stochastic (but still mostly
deterministic, i.e η-greedy with η ≈ 0), then it will be arbitrarily close to gain optimality and also
recover probability optimality. This is a preferable probability-optimal policy over the uniform policy.

Overall Procedure. The high-level procedure is: (i) identify the AMECs (e.g. (A1,AA1
), (A2,A2))

by filtering out bad actions like the yellow arrow; (ii) find a cost-optimal (optimal gain cost) recurrent
policy in each AMEC that visits some s∗ infinitely often; (iii) instantiate an SSP problem that finds a
cost-optimal (optimal transient cost) transient policy from s0 to A1 ∪A2 and avoids A3; (iv) return
a policy that stitches together the policies from (ii) and (iii). See Section 4.4 for the algorithmic
details. We show in Section 5 that this solution gives the optimal solution to OPT.

4.3 Additional Assumptions and Definitions

Perhaps surprisingly, when planning with a simulator (i.e., generative model), even infinite data is
insufficient to verify an LTL formula without having a known lower-bound on the lowest nonzero
probability of the transition function P [41]. Without this assumption, LTL constrained policy
learning is not learnable [66]. We thus begin by assuming a known lower bound on entries in P .3

Assumption 1 (Lower Bound). We assume we have access to a lower bound β > 0 on the lowest
non-zero probability of the transition function P (Sec. 3.1):

0 < β ≤ min
s,a,s′∈S×A×S

{P (s, a, s′)|P (s, a, s′) > 0}. (2)

We assume that all the costs are strictly positive, avoiding zero-cost (or negative-cost) cycles that trap
a policy. Leveraging cost-perturbations and prior work [58] can remove the assumption.
Assumption 2 (Bounds on cost function). The minimum cost cmin > 0 (Sec. 3.1) is strictly positive.

Let D = {(s, a, s′)} be all the collected samples (s, a, s′) while running the algorithm. At any
point, P̂ (s, a, s′) = |{(s,a,s′)∈D}|

|{(s,a)∈D}| is the empirical frequency of visiting s′ from (s, a). We introduce

3Our assumptions are consistent with the minimal requirements studied by [41]
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an event E and error ψ(n) to quantify uncertainty on P̂ (s, a, s′) based on current data: n(s, a) =
|{(s, a) ∈ D}|. E is based on empirical Bernstein bounds [42], and holds w.p. 1− δ (Lemma B.1).
Definition 4.2 (High Probability Event). A high probability event E :

E = {∀s, a, s′ ∈ S ×A× S,∀n(s, a) > 1 : |(P (s, a, s′)− P̂ (s, a, s′))| ≤ ψsas′(n) ≤ ψ(n)},

where ψsas′(n) ≡
√

2P̂ (s, a, s′)(1− P̂ (s, a, s′)))ξ(n) + 7
3ξ(n), ψ(n) ≡

√
1
2ξ(n) +

7
3ξ(n), and

ξ(n) ≡ log( 4n
2|S|2|A|

δ )/(n− 1).

Remark 4.1. For some ρ > 0, if we require |P (s, a, s′)− P̂ (s, a, s′)| ≤ ρ then we need n(s, a) =
ψ−1(ρ) samples for state-action pair (s, a). See Lemma B.2 for the quantity ψ−1(ρ).

Definition 4.3 (Plausible Transition Function). The set of plausible transition functions is given by

P = {P̃ : S ×A → ∆(S)|

{
P̃ (s, a, s′) = P̂ (s, a, s′), P̂ (s, a, s′) ∈ {0, 1}
P̃ (s, a, s′) ∈ P̂ (s, a, s′)± ψsas′ ∩ [β, 1− β], otherwise

} (3)

Let P(s, a) ≡ {P (s, a, ·)|P ∈ P} be the possible transition distributions for state-action pair (s, a).
We denote Pπ(s, s

′) = Ea∼π[P (s, a, s
′)] as the Markov chain given dynamics P with policy π, and

can be thought of as a |S| × |S| matrix Pπ = {pij}|S|
i,j=1.

4.4 Main Algorithm: LTL Constrained Planning (LCP)

Algorithm 1 LTL Constrained Planning (LCP)
Param: Error ϵV > 0, Error ϵφ > 0, Tolerance δ > 0, Lower bound β > 0 (see Assumption 1)
1: Globally, track P̂ (s, a, s′) = |{(s,a,s′)∈D}|

|{(s,a)∈D}| // Empirical estimate of P

2: ((A1,AA1), . . . , (Am,AAk ))← FindAMEC((S,A, P̂ ))
3: for i = 1, . . . , k do
4: Set πi, gi ← PlanRecurrent((Ai,AAi),

ϵV
7λ

) // Plan gain-optimal policy πi for Ai

5: Set π0 ← PlanTransient(((A1, g1), . . . , (Ak, gk)),
2ϵV
9

) // Plan shortest paths policy π0 to ∪k
i=1 Ai

6: return π = ∪k
i=0πi

Our approach, LTL Constrained Planning (LCP), has three components, as shown in Algorithm 1 and
described below. Recall from Problem 1 that the policy optimization problem OPT is instantiated
over a product MDP (Def. 3.3), and that we are given a generative model of the true dynamics P
from which we can sample transitions s′ ∼ P (s, a) for any state/action pair.

Finding AMECs (FindAMEC). After sampling each state-action pair ϕFindAMEC = O( 1β ) times (see
Prop. B.4), by Assumption 1, we can verify the support of P . We can compute all of the MECs using
Algorithm 47 from [11]. Among these MECs, we keep the AMECs, which amounts to checking if
the MEC (Ai,AAi

) contains an accepting state s∗ ∈ S∗ from the given product MDP.

PlanRecurrent (PR). To plan in each AMEC (A,AA) (i.e., find the optimal recurrent

Algorithm 2 PlanRecurrent (PR)
Param: AMEC (A,AA), error ϵPR > 0

1: Set ρ← 2ψ(ϕFindAMEC(β)) // ρ ∼ ∥P − P̃∥−1
1

2: repeat
3: Set ρ← ρ

2

4: Sample ψ−1(ρ) times ∀(s, a) ∈ A×AA

5: v′, v, P̃ ← VI(Lα
PR, dPR, ϵ

L
PR) // v′ = Lα

PRv

6: until ρ > ϵPR(1−∆(P̃ ))
3|A|cmax

// ∥P − P̃∥1 small

7: Set policy π ← η-greedy policy w.r.t. v′

8: Set gain gπ ← 1
2
(max(v′ − v) + min(v′ − v))

9: return π, gπ

policy), we use Alg. 2 with (extended) relative
value iteration (VI, Alg. 4 in appendix) using the
optimistic Bellman operator Lα

PR (see Table 1, we
discuss α in next paragraph). Let πv denote the
greedy policy w.r.t. the fixed point v = Lα

PRv
(v is the optimistic value estimate). Using the
η-greedy policy, π ≡ (1 − η)πv + ηUnif(AA)
(Alg. 2, Line 7), together with Pπ, makes A re-
current: s∗ ∈ A is visited infinitely often and
P[π |= φ|s0 ∈ A] = 1. Since η can be arbitrarily
small (Lemma B.7), then gπ ≈ gπv

and π is both
cost and probability optimal. As intuited in Sec-
tion 4.2, π has full support over AA but is nearly

deterministic.4

4Typically, RL settings admit a fully deterministic optimal policy, but for LTL constrained policy optimization
the optimal policy may not be deterministic (although can be very nearly so). See Cost Optimality in Section 4.2
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Table 1: Subroutine Operators and Parameters for Value Iteration

Op/Param Description

Lα
PRv(s) mina∈AA(s)

(
C(s, a) + αminp∈P(s,a) p

T v
)
+ (1− α)v(s) ∀s ∈ A

dPR(vn+1, vn) < ϵLPR maxs∈A(vn+1(s)− vn(s))−mins∈A(vn+1(s)− vn(s)) < 2ϵPR
3

LPTv(s)

{
min

{
mina∈AA(s)

(
C(s, a) + minp∈P(s,a) p

T v
)
, V̄ /ϵφ

}
, s ∈ S \ ∪k

i=1Ai

λgi, s ∈ Ai

dPT(vn+1, vn) < ϵLPT ∥vn+1 − vn∥1 < cminϵPTϵφ/(4V̄ )

VI in Line 5 of Alg. 2 is an iterative procedure (Alg. 4 in appendix), and terminates via dPR < ϵLPR
(Table 1). Convergence of extended VI is guaranteed [46, 29, 22], so long as the dynamics, P̃ =
argminp∈P(s,a) p

T v, achieving the inner minimization of Lα
PR are aperiodic – hence the aperiodicity

transform α ∈ (0, 1) in Lα
PR [46]. Computing P̃ can be done efficiently [29] (Alg. 5 in appendix). For

stability, we shift each entry of vn by the value of the first entry vn(0) [12].

Alg. 2 returns the average gain cost gπ of policy π when we have enough samples for each state-action
pair in (A,AA) to verify that n > ψ−1

(
ϵPR(1−∆(P̃π))

3|A|cmax

)
where ∆(P̃π) =

1
2 maxij

∑
k |p̃ik − p̃jk|.

Here, ∆(P̃π) is an easily computable measure on the ergodicity of the Markov chain P̃π [18]. We
track ψ(n) (recall Def. 4.2) via a variable ρ and sample ψ−1(ρ) ≈ 1

ρ2 (see Lemma B.2) samples
from each state-action pair in (A,AA) (Alg. 2, Line 4). We halve ρ each iteration (Alg. 2, Line 3)
and convergence is guaranteed because ρ will never fall below some unknown constant ϵPR(1−∆̄A)

6|A|cmax

(see Lemma B.8); the halving trick is required because ∆̄A is unknown a priori.
Proposition 4.2 (PR Convergence & Correctness, Informal). Let πA be the gain-optimal policy in
AMEC (A,A). Algorithm 2 terminates after at most log2

(
6|A|cmax

ϵPR(1−∆̄A)

)
repeats, and collects at most

n = Õ( |A|2c2max

ϵ2PR(1−∆̄A)2
) samples for each (s, a) ∈ (A,AA). The η-greedy policy π w.r.t. v′ (Alg. 2, Line

5) is gain optimal and probability optimal: |gπ − gπA
| < ϵPR, P[π |= φ|s0 ∈ A] = 1.

Algorithm 3 PlanTransient (PT)

Param: States & gains: {(Ai, gi)}ki=1, err. ϵPT > 0
1: Set VT (s) = λgi for s ∈ Ai // Terminal costs
2: Sample ϕPT times ∀(s, a) ∈ (S \ ∪Ai)×A
3: v′, v, P̃ ← VI(LPT, dPT, ϵ

L
PT, VT ) // v′ = LPTv

4: Set π ←greedy policy w.r.t v′

5: return π

PlanTransient (PT). This is the stochastic
shortest path (SSP) reduction step that finds
a policy from the initial state s0 to the
AMECs (Alg. 3). The main algorithmic tool
used by PlanTransient is similar to that of
PlanRecurrent: it also uses extended value iter-
ation (VI, Alg. 4 in appendix) but with a different
optimistic Bellman operator LPT (Table 1), and
then returns a (fully deterministic) greedy policy

w.r.t. the resulting optimistic value v (Alg. 3, Line 4). LPT is used to calculate the highest probability,
lowest cost path to the AMECs (Alg. 3, Line 3).

Since rejecting end components might exist (see A3 from Figure 2 (Left)), a trajectory may end up
stuck and accumulate cost indefinitely, and so we must bound ∥v∥∞ < V̄ /ϵφ to prevent blow up.
In Prop. B.13, we show how to select V̄ such that π will reach the target states (in this case, the
AMECs), first with high prob and then with lowest cost. The existence of such a bound on ∥v∥∞ was
shown to exist, without construction, in [34]. In practice, choosing a large V̄ is enough.

The terminal costs VT (Alg. 3, Line 1) together with Bellman equation LPT has value function
Ṽπ ≈ p(Jπ + 1

p

∑k
i=1 pigπi

) + (1 − p)V̄ /ϵφ ≈ Vπ, relating to Vπ (OPT), see Section A.1. Here,

pi = P[π reaches Ai] ≡ Eτ∼TP
π
[1∃s∈τ s.t s∈Ai

] and p =
∑k

i=1 pi. VI converges when dPT < ϵPT
(see Table 1). Convergence of extended VI for SSP is guaranteed [58, 34]. The number of samples

required for each state-action pair (s, a) ∈ (S \ ∪Ai)×A is ϕPT = ψ−1
(

cminϵPTϵ
2
φ

14|S\∪k
i=1Ai|V̄ 2

)
.

Proposition 4.3 (PlanTransient Convergence & Correctness, Informal). Denote the cost- and
prob-optimal policy as π′. After collecting at most n = Õ( |S\∪k

i=1Ai|2V̄ 4

c2minϵ
2
PTϵ

4
φ

) samples for each (s, a) ∈
(S \ ∪ki=1Ai)×A, the greedy policy π w.r.t. v′ (Alg. 3, Line 3) is both cost and probability optimal:

∥Ṽπ − Ṽπ′∥ < ϵPT, |P[π reaches ∪ki=1 Ai]− P[π′ reaches ∪ki=1 Ai]| ≤ ϵφ.
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5 End-To-End Guarantees

The number of samples necessary to guarantee an (ϵV , ϵφ, δ)-PAC approximation to the cost-optimal
and probability-optimal policy relies factors: β (lower bound on the min. non-zero transition
probability of P ), {cmin, cmax} (bounds on the cost function C), ∆̄Ai

(worst-case coefficient of
ergodicity for EC (Ai,AAi

)), V̄ (upper bound on the value function), and λ (tradeoff factor).
Theorem 5.1 (Sample Complexity). Under the event E , Assumption 1 and 2, after

n = Õ
(
1

β
+

1

ϵ2V

(
|S|2V̄ 4

c2minϵ
4
φ

+ λ2
k∑

i=1

|Ai|2c2max

(1− ∆̄Ai
)2

))
samples5 are collected from each state-action pair, the policy π returned by Algorithm 1 is, with
probability 1− δ, simultaneously ϵV -cost optimal and ϵφ-probability optimal, satisfying:

(i) |P[π |= φ]− P[π∗ |= φ]| ≤ ϵφ (ii) ∥Vπ − Vπ∗∥∞ < ϵV . (4)

With a sufficiently large λ (which may not be verifiable in practice), π is also gain optimal.
Corollary 5.2 (Gain (Average Cost) Optimality). There exists λ∗ > 0 s.t. for λ > λ∗, the policy π
returned by Alg. 1 satisfies (4), gπ = argminπ′∈Πmax

gπ′ , and is probability and gain optimal.

The high-level structure of our analysis follows the algorithm structure in Section 4.4, via composing
the constituent guarantees. To complete the analysis, we develop some technical tools which may be
of independent interest, including a gain simulation Lemma B.8 and an η-greedy optimality Lemma
B.7. For ease of exposition, we also ignore paths between AMECs (see Appendix D.2).

6 Empirical Analysis
We perform experiments in two domains: (1) Pacman domain where an agent finds food and
indefinitely avoids a ghost; (2) discretized version of mountain car (MC) [14] where the agent must
reach the flag. Our goal is to understand whether: (i) our LCP approach (Alg.1) produces competitive
polices; (ii) LCP can work in continuous state spaces through discretization; (iii) LCP can enjoy
efficient sample complexity in practice. For a baseline, we use Logically Constrained RL (LCRL,
[26]), which is a Q-learning approach to LTL-constrained PO in unknown MDPs. We also do heavy
cost shaping to LCRL as another baseline. See App E for more details, experiments, and figures.

6.1 Results

Competitiveness of the policy in full LTL specs? The probability of LCP satisfying the LTL
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Figure 3: Results. (Left Column) Pacman. φ is to
eventually collect food and always avoid the ghost. We
let the system run for a maximum of 100 timesteps.
(Right Column) Discretized Mountain Car (MC). φ is
to eventually reach the flag.

spec in Figure 3 (Left) approaches 1 much
faster than the two baselines. The returned
policy collects the food quickly and then
stays close, but avoids, the ghost. Any pol-
icy that avoids the ghost is equally good,
as we have not incentivized it to stay far
away. LCRL redefines cost as 1 if the LTL
is solved and 0 otherwise, which is too
sparse and learning suffers. Indeed, shaped
LCRL performs better than straight LCRL.

Performance in continuous state space?
Similarly, the probability of satisfying the
LTL spec in Figure 3 (Right) goes up to
1. However, here the LCRL (shaped) base-
line performs relatively well as it is being
given “breadcrumbs” for how to solve the
task. Our algorithm performs well without
needing any cost shaping. Standard LCRL fails to learn. This experiment demonstrates that our
method can be used even in discretized continuous settings.

5The lower bound relating to β from [41] is Ω( log(2δ)
log(1−β)

) whereas ours is Õ( 1
β
). We conjecture that Ω̃( 1

β
)

samples is required. See Appendix Section C.
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Sample Complexity? Our theory is quite conservative w.r.t. empirical performance. In Pacman
(Figure 3, Left), Thm. 5.1 suggests ≈ 350 samples per (s, a) pair just to calculate the AMECs.
Empirically, LCP finds a good policy after 11 samples per (s, a) pair (∼ 66k/6k samples/pair).

Other Considerations. One of the strengths and potential drawbacks of LTL is its specificity. If
a φ, for a truly infinite horizon problem, is to “eventually” do something, then accomplishing the
task quickly is not required. As a finite horizon problem, in MC (Fig. 3, Right) SSP finds the fastest
path to the goal. In contrast, since any stochastic policy with full support will “eventually” work, the
policy returned by LCP for Fig 1 (Left) (Fig. 2 Center, & App Fig. 7) may take exponential time to
complete a single loop. Two straightforward ways to address this issue are: (a) including explicit
time constraints in φ; and (b) cost shaping to prefer policies reaching some s∗ quickly and repeatedly.
Unlike standard cost-shaping, φ satisfaction is still guaranteed since the cost is decoupled from φ.

7 Related Work

Constrained Policy Optimization. One attempt at simplifying cost functions is to split the desired
behaviors from the required behaviors. The desired behaviors remain as part of the cost function while
the required behaviors are treated as constraints. Recent interest in constrained policy optimization
within the RL community has been related to the constrained Markov Decision Process (CMDP)
framework [6, 39, 2, 43]. This framework enables clean methods and guarantees, but enforces
expected constraint violations rather than absolute constraint violations. Setting and interpreting
constraint thresholds can be very challenging, and inappropriate in safety-critical problems [38].

LTL + RL. Recently, LTL-constrained policy optimization has been developed as an alternative to
CMDPs [41]. Unlike CMPDs, the entire task is encoded into an LTL expression and is treated as the
constraint. Q-learning variants when dynamics are unknown and Linear Programming methods when
dynamics are known are common solution concepts [50, 26, 13, 16, 20]. The Q-learning approaches
rely on proper, unknowable tuning of discount factor for their guarantees. Theoretically oriented
works include [23, 64]. While providing PAC-style guarantees, the assumptions made in these works
rely on unknowable policy-environment interaction properties. We make no such assumptions here.

Another solution technique is employing reward machines [60, 17, 63] or high-level specifications
that can be translated into reward machines [30]. These works are generally empirical and handle
finite or repeated finite problems (episodic problems at test time); they can only handle a smaller
set of LTL expressions, specifically regular expressions. Our work handles ω-regular expressions,
subsuming regular expressions and requires a nontrivial leap, algorithmically and theoretically, to
access the broader set of allowable expressions. Many problems are ω-regular problems, but not
regular, such as liveness (something good will happen eventually) and safety (nothing bad will happen
forever). The works that attempt to handle full LTL expressibility redefine reward as 1 if the LTL is
solved and 0 otherwise; the cost function of the MDP is entirely ignored.

Verification and Planning. As an alternative to our approach, one might consider LTL satisfaction
verification and extend it to an optimization technique by checking every policy (which will naively
take an exponential amount of samples to verify a single policy [15, 8]). Many verification approaches
exist [36, 11, 5, 67, 37, 27] and among the ones that do not assume known dynamics, the verification
guarantees rely on quantities as difficult to calculate as the original verification problem itself [8].

8 Discussion

We have presented a novel algorithm, LCP, for policy optimization under LTL constraints in an
unknown environment. We formally guarantee that the policy returned by LCP simultaneously has
minimal cost with respect to the MDP cost function and maximal probability of LTL satisfaction.
Our experiments verify that our policies are competitive and our sample estimates conservative.

The assumptions we make are strong, but to the best of our knowledge, are the most relaxed amongst
tractable model-based algorithms proposed for this space. Model-free algorithms (Q-learning) have
less stringent assumptions but do not come with the kind of guarantees that our work has and largely
ignore the cost function, solving only part of the problem. An interesting future direction would be to
extend our work to continuous state and action spaces and settings with function approximation.
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A Notation and Overview
Table 2: Glossary of terms

Acronym Term

RL Reinforcement Learning
PO Policy Optimization
LTL Linear Temporal Logic
MDP Markov Decision Process
LDBA Limit Determinisitic Buchi Automaton
AMEC/MEC/EC Accepting MEC, Maximal EC, End Component
LCP LTL Constrained Planning, Algo 1
FindAMEC Subroutine to assist in finding AMECs
PlanRecurrent, PR Subroutine to plan in AMECs, Algo 2
PlanTransient, PT Subroutine to plan to AMECs, Algo 3
NoBlockPlanTransient, NB-PT Subroutine to plan to AMECs, Algo 6
VI Value Iteration Subroutine, Algo 4
AP Atomic Proposition
Σ Alphabet Σ = 2AP

S State Space
A Action Space. A(s) allowable actions in state s.
AA Restricted Action Space. AA(s) ⊆ A(s) allowable actions in state s ∈ A ⊆ S.
P Transition Function
Pπ Markov Chain induced by π in P
C Cost Function
X Product-MDP
τ Run or trajectory in an MDP
π Policy
η-greedy w.r.t π in A ⊆ S = (1− η)π + ηUnif(AA) with 0 ≤ η ≤ 1
φ LTL Specification/Formula/Task
P[π |= φ] Probability that a policy satisfies the task
Π,Πmax Class of stochastic policies, π ∈ Π with maximal P[π |= φ]
β Lower bound on minimum, nonzero transition probability
D Dataset tracking all tuples (s, a, s′) simulated
P̂ Empirical estimate of P from data in D
P̃ Optimistic dynamics returned by VI
P Plausible transition functions consistent with all the information gathered in D
E High probability event
n(s, a) Number of samples accumulated in (s, a). Also denoted n
ψ(n) Error bound on maxs′∈S |P̂ (s, a, s′)− P (s, a, s′)|
ψ−1(ρ) Number of samples n(s, a) necessary to achieve maxs′∈S |P̂ (s, a, s′)− P (s, a, s′)| < ρ
ϵV Cost-optimality tolerance wrt. main problem (1)
ϵφ Prob-optimality tolerance wrt. main problem (1)
ϵPR error input into PR, ϵPR = ϵV

7λ

ϵPT error input into PT, ϵPT = 2ϵV
9

ϵLPR Convergence condition for VI in PR, ϵLPR = 2ϵPR
3

ϵLPT Convergence condition for VI in PT, ϵLPT =
cminϵPTϵφ

4V̄
α Aperiodicity Coefficient α ∈ (0, 1). Pα,π = αPπ + (1− α)I
Lα
PR Lα

PRv(s) = mina∈AA(s)

(
C(s, a) + αminp∈P(s,a) p

T v
)
+ (1− α)v(s) ∀s ∈ A

LPT LPTv(s) =

{
min

{
mina∈AA(s)

(
C(s, a) + minp∈P(s,a) p

T v
)
, V̄

}
, s ∈ S \ ∪k

i=1Ai

λgi, s ∈ Ai

dPR Convergence operator for PR, dPR(v′, v) = maxs∈A(v
′(s)− v(s))−mins∈A(v

′(s)− v(s))
dPT Convergence operator for PT, dPT(vn+1, vn) = ∥vn+1 − vn∥1
VT Terminal costs. VT = 0 by default
λ Tradeoff between gπ and Jπ
Jπ Transient cost, conditioned on runs satisfying φ
gπ Gain, Average-cost, conditioned on runs satisfying φ
V̄ Upper bound on Jπ for any π ∈ Π
∆(M) Coefficient of Ergodicity of matrix M , ∆(M) = 1

2
maxij

∑
k |Mik −Mjk|

∆̄Ai Worst-case coefficient of ergodicty in Ai
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A.1 Overview

There is a lot of notation that we will be using to get through the analysis. It is important to distinguish
the following:

Table 3: Policies and Probabilities

Acronym Term

π∗ Optimal policy w.r.t (OPT)
π Policy returned by LCP (Algo 1)
πAi Gain and Prob-optimal policy in AMEC (Ai,AAi) in dynamics P
π̃Ai Gain and Prob-optimal policy in AMEC (Ai,AAi) in dynamics P̃
πi A policy in states Ai of an AMEC (Ai,AAi), ignoring what π does outside of Ai

pπ , p∗ P[π |= φ] and P[π∗ |= φ]. Also denoted pπ and pπ
∗

pπi , pπ
∗

i P[π reaches Ai],P[π∗ reaches Ai] ≥ 0 denoted pi, p∗i (resp),
∑k

i=1 pi = p,
∑k

i=1 p
∗
i = p∗

Table 4: Gains

Term Description. (Subscript i or Ai denotes “in AMEC (Ai,AAi)”)

ĝP̃π̃Ai
Approximated gain of (greedy) optimal policy π̃Ai under optimistic dynamics P̃

gPπi
Actual gain of policy πi (η-greedy version of policy from PR) under true dynamics P

gPπAi
Gain of optimal policy πAi under dynamics P

The relationship between these gains is subtle. PlanRecurrent (Algo 2) returns ĝP̃π̃Ai
as the estimate

for how good the best greedy policy will be in AMEC (Ai,AAi
) under dynamics P̃ . But, we don’t

use the greedy policy, we use the η-greedy policy πi. With πAi
being the true gain-optimal policy in

dynamics P (in AMEC (Ai,AAi)), then we will find the following relations:

ĝP̃π̃Ai︸︷︷︸
Output from PR

≈︸︷︷︸
ϵLPR
2 [22]

gP̃π̃Ai
≈︸︷︷︸

Lem B.7

gP̃πi
≈︸︷︷︸

Lem B.8

gPπi
≈︸︷︷︸

Prop B.5

gPπAi︸︷︷︸
Actual

In general gains g are functions of state: g(s). However, it is well known [46, 22] that in communi-
cating MDPs (each state is reachable from one another by some policy) that the gain of the optimal
policy (even if determinstic) is constant – independent of state. Since AMECs are communicating
MDPs, then πAi

, π̃Ai
induce constant gains in P, P̃ respectively. Lastly, the stochastic policy πi

makes both P̃ and P recurrent, and so the gain is also constant. We will therefore only be considering
the absolute difference between gains rather than L∞ norms (as they coincide).

Table 5: Value Functions

Acronym Term

Vπ Main objective, value function V P
π,λ = Jπ + λgπ

v Approximated value of policy π from PT (Algo 2) in dynamics P̃
Ṽ P̃
π Actual value of policy π from PT in dynamics P̃
Ṽ P
π Actual value of policy π from PT in dynamics P ,

also denoted Ṽπ = p(Jπ +
∑k

i=1
pi
p
ĝP̃π̃Ai

) + (1− p) V̄
ϵφ

When superscripts are dropped in V , the dynamics are the true dynamics P of the product-MDP
X . Once again, the relationships between these value functions is subtle. PlanTransient (Algo
3) returns v as the estimate for how good π (the greedy policy wrt v) will be in reaching AMECs
{(Ai,AAi

)}ki=1, but is optimistic. v is an approximation to Ṽ P̃
π . Roughly speaking, we will find that

they are all similar/related:

v︸︷︷︸
Ouput from PT

≈︸︷︷︸
Lem B.16

Ṽ P̃
π ≈︸︷︷︸

Lem B.15

Ṽ P
π ≈︸︷︷︸

Prop B.12/D.1

Ṽ P
π∗︸︷︷︸

An intermediate Value Func.
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where the last approximation has 2 different propositions: the first allows the simplifying assumption
made in the main paper regarding paths between AMECS, the second removes that assumption at the
expense of increased computation. Finally,

∥Ṽ P
π − Ṽ P

π∗∥ ≈︸︷︷︸
Thm 5.1

∥V P
π − V P

π∗∥ (5)

which involves swapping ĝP̃πAi
in Ṽ for gPπAi

.

18



B Analysis: Statements with Proof

B.1 Sample Complexity Guarantee

The number of samples necessary to guarantee an (ϵV , ϵφ, δ)-PAC approximation to the cost-optimal
and probability-optimal policy relies factors: β (lower bound on the mininum non-zero transition
probability of P ), {cmin, cmax} (bounds on the cost function C), ∆̄Ai

(worst-case coefficient of
ergodicity for EC (Ai,AAi

)), V̄ (upper bound on the value function), and λ (tradeoff factor). Recall
that an event E captures the scenario where the empirical transition function P̂ is close to the true
transition function P . E holds with probability at least 1− δ, see Lem B.1.
Theorem 5.1 (Sample Complexity). Under the event E , Assumption 1 and 2, after

n = Õ
(
1

β
+

1

ϵ2V

(
|S|2V̄ 4

c2minϵ
4
φ

+ λ2
k∑

i=1

|Ai|2c2max

(1− ∆̄Ai
)2

))
samples6 are collected from each state-action pair, the policy π returned by Algorithm 1 is, with
probability 1− δ, simultaneously ϵV -cost optimal and ϵφ-probability optimal, satisfying:

(i) |P[π |= φ]− P[π∗ |= φ]| ≤ ϵφ (ii) ∥Vπ − Vπ∗∥∞ < ϵV . (4)

Comparison To RL Literature. Before presenting the proofs, we briefly compare this guarantee
with standard guarantees in model-based reinforcement learning under a generative model. It is
important to note that while we show that our guarantee is a sum of 3 terms, a tighter bound would be
a max over the 3 terms. To the best of our knowledge, the current state-of-the-art RL (with generative
model) guarantee is Õ( 1

(1−γ)3ϵ2 ) [3], per state-action pair. Here, H = 1
1−γ represents the effective

horizon in discounted settings. In other words, cmaxH is the bound on (their) ∥V ∥. In our case, for
the SSP reduction, the effective horizon is H = ∥Ṽ ∥∞

cmin
, as this is the expected goal-reaching time

in the worst-case (since we do not have any discounting). We estimate ∥Ṽ ∥∞ with upper bound V̄
ϵφ

.
Suppose we set ϵ = min(ϵV , ϵφ). Focusing just on the center term, we have guarantee taking the form,
roughly, |S|2H4

ϵ2 . Here, the |S|2 comes from a loose upper bound maxs∈S,a∈A ∥P̂ (s, a, ·)∥1 = |S|. In
fact, as noted in [58], when the MDP is not too chaotic maxs∈S,a∈A ∥P̂ (s, a, ·)∥1 = O(1). Further,
by using careful variance-aware arguments from [58] we can decrease the dependency from H4 to
H3. Hence, the SSP guarantee (our center term) and the standard RL guarantee are very similar.
The first term 1

β does not appear in standard RL literature because there is no constraint verification
needed, but in practice will be dominated by the other terms. The last term is also similar to the center
term. cmax

1−∆̄Ai

can also be seen as an effective horizon, accumulating cmax cost until the accepting

component sufficiently mixes. Here, |Ai|2 ≤ |S|2 and, again, comes from the loose upper bound
maxs∈Ai,a∈AAi

∥P̂ (s, a, ·)∥1 = |Ai|.

Proof of Theorem 5.1. We begin by examining the interaction of π∗ with P . The Markov chain Pπ∗

has a number, say m, of recurrent classes R1, . . . , Rm, sets of states that are trapping and visited
infinitely often once reached. Some of the recurrent classes Ri contain an accepting state s ∈ S∗,
making any trajectory entering Ri an accepting run, without loss of generality call these R1, . . . , Rm′

(we just relabel them). Let Aπ∗
i
(s) = {a ∈ A|π∗

i (s|a) > 0} denote the support of actions taken by
π∗
i in state s ∈ Ri. Let Aπ∗

i
= {Aπ∗

i
(s)}s∈Ri be the indexed action set in Ri. Then, by definition,

{(Ri,Aπ∗
i
)}m′

i=1 are accepting EC. By definition, each accepting EC (Ri,Aπ∗
i
) must be contained

within (or is itself) some AMEC (Ai,Ai).

Fix some accepting EC (Rj ,Aπ∗
j
). We claim, without loss of generality, (Rj ,Aπ∗

j
) = (Ai,AAi

) for
some index i ∈ 1, . . . , k. To show this, let πAi be the gain optimal, and probability-optimal policy in
AMEC (Ai,AAi): πAi is defined over all states s ∈ Ai and actions a ∈ AAi . Further, consider the
modified optimal policy

π̃∗(s, a) =

{
πAi

(s, a), s ∈ Ai

π∗(s, a), otherwise.

6The lower bound relating to β from [41] is Ω( log(2δ)
log(1−β)

) whereas ours is Õ( 1
β
). We conjecture that Ω̃( 1

β
)

samples is required. See Appendix Section C.
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Because πAi is prob-optimal (ie. P[π̃∗ |= φ|s0 ∈ Ai] = 1) in Ai then the probability P[π̃∗ |= φ] ≥
P[π∗ |= φ]. Further, Jπ̃∗ ≤ Jπ because any τ that formerly passed through Rj \Ai now accumulates
less cost. Further, gπAi

≤ gπ∗
i

by definition of optimality in AMEC (Ai,AAi). Thus, Vπ̃∗ ≤ Vπ∗ . Of
course, by definition of optimality, the opposite signs hold: Vπ̃∗ ≥ Vπ∗ and P[π̃∗ |= φ] ≤ P[π∗ |= φ].
Therefore π̃∗ and π∗ are indistinguishable.

Repeating the above argument for each (Rj ,Aπ∗
j
) means the accepting EC of π∗ are AMECS and,

by definition, form some subset of all of the AMECs {(Ai,AAi
}ki=1. In other words, all accepting

runs of π∗ reach states ∪ki=1Ai. Furthermore, gπ∗ =
∑k

i=1
p∗
i

p g
P
πAi

where p∗i ≥ 0 is the probability

that π∗ reaches Ai and
∑k

i=1 p
∗
i = p.

Property (i) now follows as a direct consequence of Prop 4.3 and Prop 4.2. Recall by Prop 4.3 that
|P[π reaches ∪ki=1 Ai] −maxπ′∈Πmax P[π′ reaches ∪ki=1 Ai]| ≤ ϵφ. Prop 4.2 implies that once a
run enters some Ai, the run is accepted. Remaining runs cannot be accepted since they do not reach
any AMEC, the only way to be accepted. Hence P[π |= φ] = P[π reaches ∪ki=1 Ai]. Since we just
showed that all accepting runs of π∗ reach some (Ai,Ai) then:

0 ≤ P[π∗ |= φ]− P[π |= φ] ≤ P[π∗ reaches ∪ki=1 Ai]− P[π reaches ∪ki=1 Ai] ≤ ϵφ.

To show Property (ii), first let us define pπi as the probability of π reaching AMEC (Ai,AAi) and,
by property (i),

∑k
i=1 p

π
i =

∑k
i=1 p

∗
i = p. The value function given by the Bellman operator LPT

(Table 1) in Algorithm 3 takes the form

Ṽπ(s) = p(Jπ(s) + λ

k∑
i=1

pπi
p
ĝP̃π̃Ai

+ (1− p) V̄
ϵφ

(6)

where ĝP̃π̃Ai
are the approximated gains for end component (Ai,AAi

) from Algorithm 2. To see this,

there is probability p that π |= φ and achieves (conditional) expected cost Jπ(s) + λ
∑k

i=1
pi

p ĝ
P̃
π̃Ai

and prob 1− p that π ̸|= φ where all cooresponding trajectories get stuck and accumulate V̄
ϵφ

cost.

Let π̃ now represent the optimal solution to the value function Ṽπ (Algo 3). Therefore we claim:

0 ≤ Vπ − Vπ∗ = Vπ − Ṽπ + Ṽπ − Ṽπ̃ + Ṽπ̃ − Ṽπ∗ + Ṽπ∗ − Vπ∗ + (1− p) V̄
ϵφ
− (1− p) V̄

ϵφ

≤ |Vπ − Ṽπ + (1− p) V̄
ϵφ
|︸ ︷︷ ︸

(a)

+ |Ṽπ − Ṽπ̃|︸ ︷︷ ︸
(b)

+ Ṽπ̃ − Ṽπ∗︸ ︷︷ ︸
(c)

+ |Ṽπ∗ − Vπ∗ − (1− p) V̄
ϵφ
|︸ ︷︷ ︸

(d)

≤ ϵV
3

+
ϵV
3

+ 0 +
ϵV
3
≤ ϵV

For (a), first we note that gπ =
∑k

i=1
pπ
i

p g
P
πi

, by definition of conditional expectation. Let ϵPR = ϵV
7λ .

Hence,

|Vπ − Ṽπ + (1− p) V̄
ϵφ
|︸ ︷︷ ︸

(a)

= |p(Jπ(s) + λ

k∑
i=1

pπi
p
gPπi

)− p(Jπ(s) + λ

k∑
i=1

pπi
p
ĝP̃π̃Ai

)|

≤ λ max
i=1,...,k

|gPπi
− ĝP̃π̃Ai

|

≤ λ4ϵPR
3
, Corollary B.6

≤ ϵV
3
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By similar argument, for (d), together with earlier argument that g∗π =
∑k

i=1
p∗
i

p g
P
πAi

then we also
have that:

|Ṽπ∗ − Vπ∗ − (1− p) V̄
ϵφ
|︸ ︷︷ ︸

(d)

= |p(Jπ∗(s) + λ

k∑
i=1

p∗i
p
ĝP̃π̃Ai

)− p(Jπ∗(s) + λ

k∑
i=1

pπi
p
gPπAi

)|

≤ λ max
i=1,...,k

|gPπAi
− ĝP̃π̃Ai

|

≤ λ max
i=1,...,k

|gPπAi
− gPπi

|+ |gPπi
− ĝP̃π̃Ai

|

≤ λ7ϵPR
3
, Prop B.5 and Corollary B.6

≤ ϵV
3

Further, we have (c) ≤ 0 holds because π̃ is optimal in Ṽ (either by assuming ∪ki=1Ai is the correct
choice of AMECS, or using Algo 6 instead of planTransient). In either case, (b) ≤ 3ϵPT

2 ≤ ϵV
3 by

Prop B.12 or Prop D.1, where ϵPT is set to ϵPT = 2ϵV
9 , completing the approximation guarantee.

We now compute the number of samples, per state-action pair, required by Algorithm 1. By
Prop B.4, we need n = Õ( 1β ) to verify the support of P . After calculating the AMECs
{(Ai,AAi)}ki=1, we calculate the gain-optimal policy πi for each AMEC. By Prop 4.2, we need
n = Õ(( |Ai|cmax

ϵPR(1−∆̄Ai
)
)2) = Õ(( λ|Ai|cmax

ϵV (1−∆̄Ai
)
)2) for each state-action pair in each end component

(Ai,AAi), since ϵPR = ϵV
7λ . Finally, for the transient policy π0, the SSP reduction requires

n = Õ(( |S\∪k
i=1Ai|V̄ 2

ϵPTϵ2φcmin
)2) = Õ(( |S\∪k

i=1Ai|V̄ 2

ϵV ϵ2φcmin
)2) for each state-action pair outside of the AMECs,

by Prop 4.3, since ϵPT = 2ϵV
9 . A similar sample complexity is guaranteed by using Algo 6 in place

of PlanTransient, where n = Õ(( |S|V̄ 2

ϵV ϵ2φcmin
)2) is required in place of n = Õ(( |S\∪k

i=1Ai|V̄ 2

ϵV ϵ2φcmin
)2).

Adding these together, yields the worst-case number of samples necessary in any state-action pair
(s, a) ∈ S ×A. These sample guarantees hold only when the event E holds, which itself holds with
probability 1− δ (see Lem B.1).

Corollary 5.2 (Gain (Average Cost) Optimality). There exists λ∗ > 0 s.t. for λ > λ∗, the policy π
returned by Alg. 1 satisfies (4), gπ = argminπ′∈Πmax

gπ′ , and is probability and gain optimal.

Proof of Corollary 5.2. Fix some λ > 0. Let π′ = argminπ∈Πmax gπ. Suppose gπ′ < gπ but
Vπ,λ < Vπ′,λ, elementwise. In other words, π is the preferred policy. Then,

0 ≤ Vπ′,λ − Vπ,λ
= Jπ′ + λgπ′ − Jπ − λgπ
≤ max

π̃∈Π
Jπ̃ + λ (gπ′ − gπ)︸ ︷︷ ︸

<0

since Jπ̃ ≥ 0 for each π̃ ∈ Π. If λ > maxπ̃∈Π Jπ̃

gπ−gπ′
then we contradict Vπ,λ < Vπ′,λ. In particular, if π′

is the gain optimal policy then for any λ > λ∗ = maxπ̃∈Π Jπ̃

min{π∈Π|gπ ̸=g
π′ } gπ−gπ′

then π′ is preferred to any

other policy π ∈ Π.
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B.2 High Probability Event and Sample Requirement

Definition 4.2 (High Probability Event). A high probability event E :

E = {∀s, a, s′ ∈ S ×A× S,∀n(s, a) > 1 : |(P (s, a, s′)− P̂ (s, a, s′))| ≤ ψsas′(n) ≤ ψ(n)},

where ψsas′(n) ≡
√

2P̂ (s, a, s′)(1− P̂ (s, a, s′)))ξ(n) + 7
3ξ(n), ψ(n) ≡

√
1
2ξ(n) +

7
3ξ(n), and

ξ(n) ≡ log( 4n
2|S|2|A|

δ )/(n− 1).
Lemma B.1 (High Probability Event holds). The event E holds with probability at least 1− δ.

Proof of Lemma B.1 . We start with the anytime version of Theorem 4 of [42] given by Lemma 27
of [59]:

P

∀ n ≥ 1,

∣∣∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2V̂n log(4n2/δ)

n− 1
+

7 log(4n2/δ)

3(n− 1)

 ≤ δ,
for any Zi ∈ [0, 1] iid. By re-setting δ ← δ

|S|2|A| , applying union bound over all (s, a, s′) ∈
S × A × S, and observing that Zi ∼ P (s, a, s′) is a Bernoulli random variable with empirical
variance V̂n = P̂ (s, a, s′)(1− P̂ (s, a, s′)) yields the result:

{∀s, a, s′ ∈ S ×A×S,∀n > 1 : |P (s, a, s′)− P̂ (s, a, s′)| ≤ ψsas′(n)} holds with prob 1− δ
Observing that ψsas′(n) ≤ ψ(n) for all n > 1 because ψsas′(n) takes on a maximum when
P̂ (s, a, s′) = 1

2 , completes the proof.

Lemma B.2 (Inverting E). Fix (s, a, s′) ∈ S ×A× S. Under the event E , the number of samples
ψ−1(ρ) required to achieve |P (s, a, s′)− P̂ (s, a, s′)| ≤ ψsas′(n) ≤ ψ(n) < ρ is given by:

ψ−1(ρ) = ⌈ 2
ζ2

log(
16|S|2|A|
ζ4δ

)⌉+ 3 = Õ( 1
ρ2

),

where ζ ≡
− 3

7
√

2
+
√

( 3
7
√

2
)2+ 12

7 ρ

2 .

Proof of B.2. We have ψsas′ < ψ(n) = x√
2
+ 7

3x
2 ≤ ρ where x2 = ξ(n) = log(4n2|S|2|A|δ−1)

n−1 .
Solving the quadratic inequality, we have

x ≤
− 3

7
√
2
+
√
( 3
7
√
2
)2 + 12

7 ρ

2
≡ ζ

Hence, we have
log(4n2|S|2|A|δ−1)

n− 1
≤ ζ2

=⇒ n ≥ log(4n2|S|2|A|δ−1)

ζ2
+ 1

=
1

ζ2
log(eζ

2

4n2|S|2|A|δ−1)

=
2

ζ2︸︷︷︸
c1

log(e
ζ2

2

√
4|S|2|A|δ−1︸ ︷︷ ︸

c2

n) (⋆)

By Lemma B.3, if n > 2c1 log(c1c2) then n > (⋆). Simplifying,

n ≥ 2

ζ2
log(

16|S|2|A|
ζ4δ

) + 2

Selecting ψ−1(ρ) = ⌈ 2
ζ2 log(

16|S|2|A|
ζ4δ )⌉ + 3 and noting that ζ = Õ(ρ) completes the proof: n =

Õ(1/ρ2).
Lemma B.3. (Lemma 10 of [33]) If log(c1c2) ≥ 1 and c1, c2 > 0 then

N > 2c1 log(c1c2) =⇒ N > c1 log(c2N)
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B.3 FindAMEC proofs

Proposition B.4. (Support Verification FindAMEC) Under the event E and Assumption 1, if n =

ϕFindAMEC(β) =
5
β log( 100|S|2|A|

β2δ ) = Õ( 1β ) samples are collected for each state-action pair (s, a) ∈
S ×A then the support of P is verified:

P (s, a, s′) =


0, P̂ (s, a, s′) = 0

1, P̂ (s, a, s′) = 1

∈ [β, 1− β], otherwise

Proof of Prop B.4 . Fix (s, a, s′) ∈ S ×A× S . Suppose P̂ (s, a, s′) ∈ {0, 1} then by E we have

7 log(4n2|S|2|A|/δ)
3(n− 1)

≤ β (7)

Following the second half of the proof of B.2 with ζ2 = 3β
7 , we have that if we take n =

ϕFindAMEC(β) =
5
β log( 100|S

2A|
β2δ ) > 14

3β log( 784|S
2A|

9β2δ ) then we have

|P (s, a, s′)− P̂ (s, a, s′)| < β (8)

Case P̂ (s, a, s′) = 1. Suppose P̂ (s, a, s′) = 1. By Eq (8), P (s, a, s′) > 1 − β. By Assumption
1 together with the fact that

∑
x∈S P (s, a, x) = 1 then P (s, a, x) = 0 for any x ̸= s′. Therefore,

P (s, a, s′) = P̂ (s, a, s′) = 1.

Case P̂ (s, a, s′) = 0. Suppose P̂ (s, a, s′) = 0. By Eq (8), P (s, a, s′) < β. Hence P (s, a, s′) =
P̂ (s, a, s′) = 0, otherwise violating Assumption 1.

Case, Otherwise. If P (s, a, s′) > 1− β or P (s, a, s′) < β then by following the above arguments
we’d yield similar contradictions with Assumption 1. Hence, P (s, a, s′) ∈ [β, 1− β]
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B.4 PlanRecurrent proofs

Proposition 4.2 (PR Convergence & Correctness, Informal). Let πA be the gain-optimal policy in
AMEC (A,A). Algorithm 2 terminates after at most log2

(
6|A|cmax

ϵPR(1−∆̄A)

)
repeats, and collects at most

n = Õ( |A|2c2max

ϵ2PR(1−∆̄A)2
) samples for each (s, a) ∈ (A,AA). The η-greedy policy π w.r.t. v′ (Alg. 2, Line

5) is gain optimal and probability optimal: |gπ − gπA
| < ϵPR, P[π |= φ|s0 ∈ A] = 1.

We formalize Prop 4.2 as follows by adding the necessary PAC statements:
Proposition B.5 (PR Convergence & Correctness, Formal). Let πA be the gain-optimal policy in
AMEC (A,A). Algorithm 2 terminates after at most log2

(
6|A|cmax

ϵPR(1−∆̄A)

)
repeats, and collects at most

n = Õ( |A|2c2max

ϵ2PR(1−∆̄A)2
) samples for each (s, a) ∈ (A,AA). Under the event E and Assumption 1 then

with probability 1− δ, the η-greedy policy π w.r.t. v′ (Alg. 2, Line 5) is gain optimal and probability
optimal: |gπ − gπA

| < ϵPR, P[π |= φ|s0 ∈ A] = 1.

Proof of Prop 4.2 & Prop B.5. Let πv′ be the greedy policy with respect to v′. Let gP̃π̃A
be the gain

of the gain-optimal policy, π̃A, in A with respect to dynamics P̃ .

For the approximation error,

0 ≤ gPπ − gPπA
= gPπ − gP̃π + gP̃π − gP̃πv′ + gP̃πv′ − gP̃∗ + gP̃∗ − gPπA

≤ |gPπ − gP̃π |︸ ︷︷ ︸
(a)

+ |gP̃π − gP̃πv′ |︸ ︷︷ ︸
(b)

+ |gP̃πv′ − gP̃π̃A
|︸ ︷︷ ︸

(c)

+ gP̃π̃A
− gPπA︸ ︷︷ ︸
(d)

<
ϵPR
3

+
ϵPR
3

+
ϵPR
3

+ 0 = ϵPR

We have the first inequality because πA is gain optimal in P . By the Simulation Lemma B.8 we have
that (a) < ϵPR

3 by setting ϵ(2) = ϵPR
3 in the Lemma. By the η-greedy approximation Lemma B.7 we

have (b) < ϵPR
3 by setting ϵ(1) = ϵPR

3 in the Lemma. For (c), since πv′ represents the approximately

optimal policy in P̃ then, by value iteration approximation guarantees, (c) = |gP̃πv′−gP̃π̃A
| < ϵLPR

2 ≤ ϵPR
3

by setting ϵLPR =
2ϵPR
3 [22]. It is known that, by optimism and the aperiodicity transformation [22, 29]

for the average cost Bellman operator, gP̃π̃A
< gPπA

implying (d) < 0.

For the probability of satisfaction, when s0 ∈ A, following a policy that samples every action in AA

with positive probability makes the markov chain Pπ recurrent. Thus, each s ∈ A is visited infinitely
often. In particular there is some s∗ ∈ A visited infinitely often, implying π |= φ.

Convergence is guaranteed by Lemma B.8: since ρ is halved every iteration then ρ never falls below
ϵ(2)(1−∆̄A)

2|A|cmax
, which is reached after log 1

2
( ϵPR(1−∆̄A)

6|A|cmax
) = log2(

6|A|cmax

ϵPR(1−∆̄A)
) iterations (since ϵ(2) = ϵPR

3 ).

Further by Lemma B.8, we get the sample complexity n = Õ( |A|2c2max

ϵ2PR(1−∆̄A)2
), completing the proof.

Corollary B.6. Under the same assumptions as Prop B.5, in addition, |gPπ − ĝP̃π̃A
| ≤ 4ϵPR

3 .

Proof. Continuing the same argument as in Prop B.5, we have

0 ≤ gPπ − gP̃π̃A
+ gP̃π̃A

− ĝP̃π̃A
≤ ϵPR +

ϵLPR
2

=
4ϵPR
3

where we use triangle inequality and appeal to Prop B.5 for |gPπ − gP̃π̃A
| ≤ ϵPR and [22] where

|gP̃π̃A
− ĝP̃πA

| ≤ ϵLPR
2 ≤ ϵPR

3 since ϵLPR =
2ϵPR
3 .

Lemma B.7. (η-greedy approximation) Let P be any dynamics. Let π be a greedy policy in AMEC
(A,AA) with dynamics P . With 0 ≤ η ≤ 1, let πη be η-greedy with respect to π. Then, for any error
ϵ(1) > 0, there exists some threshold η∗ ∈ (0, 1] such that when η ∈ (0, η∗] we have

|gPπ − gPπη
| ≤ ϵ(1) (9)
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Proof. Let s0, . . . , s|A|−1 be any ordering of the states in A. The standard (non-optimistic) average
cost Bellman equation with known dynamics P is given by Lv(s) = g(s) + mina∈AA(s)

(
C(s, a) +

P (s, a)v
)

for each s ∈ A for a unique g and v unique up to a constant translation [12]. Furthermore,
since the end components are communicating sets then we know that g is a constant vector, i.e.
g = g(s) = g(s′) for any s, s′ ∈ A [12]. Since v is unique up to translation, we can always
set v(0) = 0 to make v unique. The evaluation equations, under policy π, is similarly, Lπv(s) =
gπ+Ea∼π

[
C(s, a)]+Pπ(s, a)v [12]. For more generality, instead of Pπ we consider αPπ+(1−α)I ,

an aperiodicity transform with any coefficient α ∈ [0, 1]. Then the Lπ written as a system takes the
form:

02|A| =

[
αPπ − (1− α)I −I

C D

]
︸ ︷︷ ︸

Xπ



v0
...

v|A|−1

g0
...

g|A|−1


︸ ︷︷ ︸

y

−



Ea∼πC(s0, a)
...

Ea∼πC(s|A|−1, a)
0
...
0


︸ ︷︷ ︸

bπ

with

C =

1 0 . . .
0 0 . . .
...

. . .

 , D =


0 . . . 0
1 −1 0

. . . . . .
0 1 −1


This system combines Lv(s) = Ea∼π(s)[C(s, a)] + (αPπ + (1− α)I)v together with g(s) = g(s′)
for any s, s′ ∈ A and v(0) = 0.

Succinctly,Xπy−bπ = 0. Similarly, we haveXπηy
′−bπη = 0. Let dX = Xπη−Xπ , db = bπη−bπ

and dy = y′ − y then (Xπ + dX)(y + dy)− (bπ + db) = 0. Hence,

dy = (Xπ + dX)−1(db− dXy)
= (I +X−1

π dX)−1X−1
π (db− dXy)

We calculate ∥dX∥∞ :

∥dX∥∞ = max
s∈A

∑
s′∈A

|αPπη (s, s
′)− αPπ(s, s

′)|

= max
s∈A

∑
s′∈A

|α((1− η)Pπ(s, s
′) + ηPUnif (s, s

′))− αPπ(s, s
′)|

= αηmax
s∈A

∑
s′∈A

|PUnif (s, s
′)− Pπ(s, s

′)|

≤ αη2|A|

By a similar argument, together with C ≤ cmax, then ∥db∥∞ ≤ 2ηcmax Hence,

∥dy∥∞ ≤ ∥(I +X−1
π dX)−1∥∞∥X−1

π ∥∞(∥db∥∞ + ∥dX∥∞∥y∥∞)

≤ ∥X−1
π ∥∞

1− ∥X−1
π ∥∞∥dX∥∞

(∥db∥∞ + ∥dX∥∞∥y∥∞)

≤ η∥X−1
π ∥∞

1− 2α|A|η∥X−1
π ∥∞

(2cmax + 2α|A|∥y∥∞)

By selecting

η ≤ η∗ =
ϵ(1)

∥X−1
π ∥∞(2cmax + 2α|A|∥y∥∞) + ϵ(1)2α|A|∥X−1

π ∥∞
we get that ∥dy∥∞ ≤ ϵ(1) and therefore |gPπ − gPπη

| ≤ ϵ(1), as desired.

25



Lemma B.8. (Simulation Lemma, Avg. Cost) Fix some α ∈ (0, 1) arbitrary. Let P̃ be the optimistic
dynamics achieving the inner minimum of the Bellman equation with respect to Lα

PR (see Table 1) in
the AMEC given by (A,AA). Let π be the η∗ stochastic policy as in Lemma B.7. For some error
ϵ(2) > 0. Let m ∈ N be the smallest value such that ∆((αP̃π + (1− α)I)m) < 1. When n is large

enough that ψ(n) ≤ 1
α2

((
ϵ(2)(1−∆(P̃m

α,π))

|A|cmax
+ 1

)1/m

− 1

)
then

|gPπ − gP̃π | < ϵ(2). (10)

Let m = maxπ∈ΠA
minm∈N{m|∆((αPπ∗

η
+ (1− α)I)m) < 1} and ∆̄A = maxπ∈ΠA

∆((αPπ∗
η
+

(1 − α)I)m) for ΠA, the set of deterministic policies in A. Then, in particular, (10) holds after
n = Õ( |A|2c2max

ϵ2
(2)

(1−∆̄A)2
) samples are collected for each state-action pair in (A,AA).

Proof. Consider, notationally, Pα(s, a, s
′) = αP (s, a, s′) + (1 − α)1{s=s′} be an aperiodicity

transform with α ∈ (0, 1). When fixed by a policy, then Pα,π = αPπ + (1 − α)I . By [46] (Prop.
8.5.8), aperiodicity transforms do not affect gain. Hence gPπ = gPα

π and gP̃π = gP̃α
π . Let xπ,Pα

be the
stationary distribution of π in Pα and xπ,P̃α

be the stationary distribution of π in P̃α. These quantities
exist due to the fact that π has full support over AA making both Pα, P̃α ergodic (finite, irreducible,
recurrent, and aperiodic). Hence,

|gPπ − gP̃π | = |gPα
π − gP̃α

π |
= |Es∼xπ,Pα

[Ea∼π(s)[C(s, a)]]− Es∼xπ,P̃α
[Ea∼π(s)[C(s, a)]]|

= |
∑
s∈A

Ea∼π(s)[C(s, a)](xπ,Pα(s)− xπ,P̃α
(s))|

≤ cmax∥xπ,Pα − xπ,P̃α
∥1

To bound ∥xπ,Pα − xπ,P̃α
∥1, we appeal to classic stationary-distribution perturbation bounds [18].

First, since P̃α,π is ergodic then ∃m0 < ∞ such that for any m ≥ m0 then ∆(P̃m
α,π) < 1. Then,

in particular, ∥xπ,Pα
− xπ,P̃α

∥1 ≤ ∥P̃m
α,π−Pm

α,π∥∞

1−∆(P̃m
α,π)

[51, 18]. Let E = Pπ,α − P̃π,α, and thus

∥E∥∞ = α∥Pπ − P̃π∥∞ ≤ α|A|ψ(n). Then,

∥P̃m
α,π − Pm

α,π∥∞ = ∥P̃m
α,π − (αPπ + (1− α)I)m∥∞

= ∥P̃m
α,π − (αE + αP̃π + (1− α)I)m∥∞

= ∥P̃m
α,π − (αE + P̃α,π)

m∥∞
≤ (α∥E∥∞ + 1)m − 1

≤ (α2|A|ψ(n) + 1)m − 1

where in the second-to-last inequality uses that ∥P̃α,π∥∞ = 1 and ∥AB∥∞ ≤ ∥A∥∞∥B∥∞ for
matrices A,B. Putting it all together we have that

|gPπ − gP̃π | ≤ cmax
(α2|A|ψ(n) + 1)m − 1

1−∆(P̃m
α,π)

(11)

We therefore require that

ψ(n) ≤ 1

α2|A|

(ϵ(2)(1−∆(P̃m
α,π))

cmax
+ 1

)1/m

− 1

 (12)

to yield |gPπ − gP̃π | < ϵ(2). The equation (12) also holds with P̃ replaced with P , with (some other)
m appropriate.

In the AMEC (A,AA) then there are at most |ΠA| = |A||AA| deterministic policies. For each policy
π ∈ ΠA, there is some η∗π satisfying Lemma B.7. Let m = maxπ∈ΠA

minm∈N{m|∆(Pm
α,πη∗

π
) < 1}
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and ∆̄A = maxπ∈ΠA
∆(Pm

α,πη∗
π
) < 1 (recall this is guaranteed because Pα,πη∗

π
is ergodic). Then,

when ψ(n) < 1
α2|A|

((
ϵ(2)(1−∆̄A)

cmax
+ 1
)1/m

− 1

)
then |gPπ − gP̃π | < ϵ((2). By Lemma B.2, we have

n = Õ( |A|
2
m c

2
m
max

ϵ
2
m
(2)

(1−∆̄A)
2
m

) = Õ( |A|2c2max

ϵ2
(2)

(1−∆̄A)2
), since m = 1 achieves the maximum.

Remark B.9. We do not require knowledge of ∆̄A < 1. The existence is sufficient to guarantee
convergence.

Remark B.10. The function ∆(M), coefficient of ergodicity of matrix M , is a measure (and bound)
of the second largest eigenvalue of M .

Remark B.11. In the main paper, we assume that m = 1 and α = 1, for simplicity in exposition. For
full rigor, m may be larger, though typically small. m can be seen as the smallest value making any
column of Pm

α,π dense. From a computational perspective, it is efficient to compute powers of P̃α,π

and stop when P̃m
α,π has a dense column, making ∆(P̃α,π) < 1. From there, we can check if ρ (Line

6, Algo 2) satisfies the r.h.s of Eq (12). We present the samples required by maximizing over m ∈ N.
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B.5 PlanTransient proofs

Proposition 4.3 (PlanTransient Convergence & Correctness, Informal). Denote the cost- and
prob-optimal policy as π′. After collecting at most n = Õ( |S\∪k

i=1Ai|2V̄ 4

c2minϵ
2
PTϵ

4
φ

) samples for each (s, a) ∈
(S \ ∪ki=1Ai)×A, the greedy policy π w.r.t. v′ (Alg. 3, Line 3) is both cost and probability optimal:

∥Ṽπ − Ṽπ′∥ < ϵPT, |P[π reaches ∪ki=1 Ai]− P[π′ reaches ∪ki=1 Ai]| ≤ ϵφ.
Proposition B.12 (PlanTransient Convergence & Correctness, Formal). Let {Ai, gi}ki=1 be the
set of inputs to Algorithm 3, together with error ϵPT > 0. Denote the cost- and prob-optimal policy
as π′. After collecting at most n = Õ( |S\∪k

i=1Ai|2V̄ 4

c2minϵ
2
PTϵ

4
φ

) samples for each (s, a) ∈ (S \ ∪ki=1Ai)×A,

under the event E and Assumption 1 then with probability 1− δ, , the greedy policy π w.r.t. v′ (Alg. 3,
Line 3) is both cost and probability optimal:

∥Ṽπ − Ṽπ′∥ < ϵPT, |P[π reaches ∪ki=1 Ai]− P[π′ reaches ∪ki=1 Ai]| ≤ ϵφ.

Proof of 4.3. Convergence follows from boundedness of ∥v∥ ≤ V̄ , and monotone convergence and
is well studied [46, 29, 59, 22].

Fix λ > 0 and drop it from the notation V P
π,λ. Let Ṽ P̃

∗ be the value function for the optimal policy in
P̃ . For the approximation error, we have

0 ≤ Ṽ P
π − Ṽ P

∗ = Ṽ P
π − Ṽ P̃

π︸ ︷︷ ︸
(a)

+ Ṽ P̃
π − Ṽ P

∗︸ ︷︷ ︸
(b)

< ϵPT

For (a) we appeal to Lemma B.15 and set ϵ(3) = ϵPT/2 requiring that ψ(n) =
ϵPTcmin

14|S\∪k
i=1Ai|V̄ 2(1+ 1

ϵφ
)2

, occuring when n = Õ(( |S\∪k
i=1Ai|V̄ 2

ϵPTϵ2φcmin
)2) samples per state-action pair have

been collected. For (b), by Lemma B.16, by selecting ϵLPT =
cminϵPTϵφ

4V̄
we have that

V P̃
π − V P

∗ ≤ (1 +
2ϵLPT
cmin

)v − V P
∗

=
2ϵLPTv

cmin

≤ 2V̄ ϵLPT
ϵφcmin

≤ ϵPT
2
.

For the probability of satisfaction, by Prop B.13, we have that π and π∗ coincide in probability of
reaching the states in ∪ki=1Ai.

Proposition B.13 (Selecting a bound on ∥v∥). Let {Ai, gi}ki=1 be the set of inputs to Algorithm
3. Let π′ have maximal probability of reaching ∪ki=1Ai. Then, with error ϵφ > 0, bounding

∥v∥∞ = ∥LPTv∥∞ ≤ V̄
ϵφ

where V̄ ≥
(

1
β|S|

(
1−β|S|

1−β

)
+ λ

)
cmax guarantees that π returned by

Algorithm 3 is near probability optimal:
|P[π |= φ]− P[π′ |= φ]| < ϵφ

Proof of B.13. Suppose V̄ ≥ Jπ + λcmax for any π ∈ Π. Let V̄
ϵφ

be chosen as upper bound on
∥v∥ = ∥LPTv∥. Denote P[π |= φ] as p, and P[π′ |= φ] as p∗. Suppose, for contradiction, p∗−p > ϵφ,
yet π is returned by the Algorithm. This would imply that Ṽπ ≤ Ṽπ′ .

Hence,

0 ≤ Ṽπ′ − Ṽπ ≤ p∗(Jπ′ + λ

k∑
i=1

p∗i
p∗
ĝP̃π̃Ai

)︸ ︷︷ ︸
≤Jπ+λcmax

− p(Jπ + λ

k∑
i=1

pi
p
ĝP̃π̃Ai

)︸ ︷︷ ︸
≥0

+(p− p∗)︸ ︷︷ ︸
<−ϵφ

V̄

ϵφ

< Jπ + λcmax − V̄
≤ 0
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Hence, we have a contradiction. Thus, |p∗ − p| ≤ ϵφ if V̄ ≥ Jπ + λcmax for any π ∈ Π. In fact,
since the solution to LPT is deterministic, it suffices to consider only deterministic Π.

We will now bound Jπ = Eτ∼Tπ

[∑κπ

t=0 C(st, π(st))
∣∣∣∣τ |= φ

]
≤ cmaxEτ∼Tπ

[κτ |τ |= φ], as this is

the only unknown quantity. Here Eτ∼Tπ
[κτ |τ |= φ] is the expected number of steps it takes π to

leave the transient states. This means that a worst-case bound would be a policy that remains in the
transient states as long as possible.

We construct the worst-case scenario and give a justification, a formal proof follows from induction.
Suppose the starting state is s0. If π induces a prob-1 transition back to s0 then s0 is recurrent, and
so κτ would be small. Instead, π induces a prob 1 − β transition to s0 and a prob β transition to
s1. Notice that the transition to s1 must be at least probability β due to Assumption 1. Again, if
s1 gave all of its probability to s1 or s0 then a MEC would form and strictly decrease κτ . This
process repeats until we reach state s|S|−1, which has to have a self-loop. If it does not, then, again
a large MEC would form and decrease κτ . Of course, this is the well known chain graph, with
easily computable expected hitting time: Eτ∼Tπ

[κτ ] ≤ 1
β|S|

1−β|S|

1−β . By making s|S|−1 the accepting

state, then Eτ∼Tπ [κτ |τ |= φ] = Eτ∼Tπ [κτ ] =
1

β|S|
1−β|S|

1−β achieves the bound. Any other choice of
accepting states would strictly decrease κτ . Hence, we can select

V̄ ≥
(

1

β|S|

(
1− β|S|

1− β

)
+ λ

)
cmax ≥ Jπ + λcmax,

completing the proof.

Remark B.14. It may also be possible to empirically estimate Jπ rather than take the bound from
Prop B.13, considering that we have the structure of P through P̂ . We give the high level idea. We
know all of the AMECs and rejecting EC, so we have all the transient states (denoted T ). Then for
some policy π and P ′ ∈ P , submatrix Qπ(s, s

′) = P ′
π(s, s

′) for s, s′ ∈ T represents the transitions
in the transient states. It is well known that Eτ∼Tπ [κτ ] = ∥(I −Q)−1∥∞. Taking the max over all
π ∈ Π, P ′ ∈ P , and finally multiplying by cmax gives a bound on Jπ .

Lemma B.15. (Simulation Lemma, Transient Cost [58]) Consider an MDP (S,A, . . .). For any two
transition functions P ′, P ′′ ∈ P , policy π, and error ϵ(3) > 0 then

∥Ṽ P ′′

π ∥∞ = ∥Ṽ P ′

π ∥∞ ≤ (1 +
1

ϵφ
)V̄ , ∥Ṽ P ′

π − Ṽ P ′′

π ∥∞ ≤
7|S|V̄ 2(1 + 1

ϵφ
)2ψ(n)

cmin
≤ ϵ(3)

occurring after n = Õ( |S|2V̄ 4

ϵ2
(3)

ϵ4φc2min
) samples from each state-action pair in S ×A.

Proof. Direct consequence of the definition of V̄ from Prop B.13, application of Lemma 2 from [58]
and Lemma B.2.

Lemma B.16. (EVI Bound, [58]) Suppose v is returned by VI with accuracy ϵLPT with Bellman
equation LPT (See Table 1). Suppose π is greedy with respect to v. If ϵLPT ≤ cmin

2 then, element-wise,

v ≤ Ṽ P
π∗ , v ≤ Ṽ P̃

π ≤ (1 +
2ϵLPT
cmin

)v
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C Conjecture on Sample Complexity

As we have proven in Theorem 5.1, the optimal policy creates a set of AMECs which coincide
with (Ai,Ai)

k
i=1. For any potential AMEC, we need to guarantee probabilistic closure. For each

state-action pair (s, a) ∈ Ai × AAi
we have to sample enough times to guarantee that we have

“collected” all of the possible unique transitions (s, a, s′). Indeed, this is similar to the famous coupon
collection problem, where we want to know how much time it will take to collect all unique transitions
(s, a, s′). Suppose there are m unique tuples each with probability β = 1

m .

We can use a Chebyshev-based lower bound:

P[N > m logm− log(
1

δ
)m] ≥ δ

Simplifying, we get that P[N > m log(mδ )] ≥ δ. Thus, the number of transitions needed is

N = Ω(m log(
m

δ
)) = Ω(

1

β
log(

1

βδ
)) = Ω̃(

1

β
)

Further, [65] show that indeed N ≥ β
log β .
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D Additional Algorithms

In this section we discuss the additional subroutines used in this paper. We discuss the case where
selecting ∪ki=1Ai as the terminal states for SSP in Algo 1 can fail and an alternative solution.

D.1 Value Iteration

Our version of Value Iteration VI (Algo 4) is a two-in-one version, due to the similarity of Relative
VI (used in PlanRecurrent) and SSP (used in PlanTransient). The general idea is that you apply
the Bellman Operator L onto your current iterate vn repeatedly until d(vn+1, vn) exceeds ϵ. When
we wish to find the gain, then VT (terminal states) is empty, and we use shifting by the first value of
vn(0) for stability [12]. In other words, we subtract vn(0) from every value of vn. On the other hand,
if a set of terminal costs is provided then these represent the set of states that we want to reach through
SSP and the value vn(s) = VT (s) is known and must be kept fixed throughout applications of L.
The only difference in our application of L over standard Bellman operators is that L is optimistic
and has an interior minimization over minp∈P(s,a) p

T vn (See Table 1). To solve this, minimization
we use a modified version from [29] given in Algo 5. The idea of Algo 5 is simple: put all the mass
of P̃ onto the lowest possible values of vn while still being consistent with P̂ . This is efficient as it
requires an ordering over v and then a single pass over the states S̃. The calculated probability p(s̃l)
(see Algo 5) are what we call the optimistic dynamics P̃ (s, a, s̃l).

Algorithm 4 Value Iteration (VI)
Param: Optimistic Bellman Operator L, Error Measure d, accuracy ϵ > 0, VT terminal values (optional)
1: Set n = 0, v0 = 0S , v1 = Lv0
2: repeat
3: n

+←− 1
4: if VT is empty then
5: Shift vn ← vn − vn(0)1 // Relative Value Iteration
6: else
7: vn(s)← VT (s) for s ∈ VT // SSP
8: Apply operator vn+1, P̃ ← Lvn // Bellman Backup
9: until d(vn+1, vn) > ϵ

10: return vn+1, vn, P̃

Algorithm 5 InnerMin (for PT/PR)

Param: A set of states S̃ , current estimate from VI vn, estimates P̂ (s, a, ·) for a specific (s, a) pair with s ∈ S̃ ,
errors ψ(n), lower bound β (See Assumption 1)

1: Sort S̃ = {s̃1, s̃2, . . . , s̃m} according to vn(s̃1) ≤ vn(s̃2) ≤ . . . ≤ vn(s̃m), where vn is the current
2: Set

p(s̃1) =


min(1− β, P̂ (s, a, s̃1) + ψ(n)), P̂ (s, a, s̃1) ̸∈ {0, 1}
1, P̂ (s, a, s̃1) = 1

0, P̂ (s, a, s̃1) = 0

3: For remaining j > 1, set p(s̃j) = P̂ (s, a, s̃j)
4: Set l← m
5: while

∑
s̃j∈S̃ p(s̃j) > 1 do

6: Reset

p(s̃l) =


max(β, 1−

∑
s̃j ̸=s̃l

p(s̃j)), P̂ (s, a, s̃l) ̸∈ {0, 1}
1, P̂ (s, a, s̃l) = 1

0, P̂ (s, a, s̃l) = 0

7: Decrement l← l − 1
8: Set P̃ (s, a, s̃) = p(s̃) for each s̃ ∈ S̃
9: return P̃ (s, a, s̃)
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D.2 Modified Algorithm handling Blocking Failure in Algorithm 1

A2A1

π1

π2

Figure 4: Blocking Issue. If A1 is included in the terminal AMECs (the states we want to reach) then
once it is reached πA1

is instantiated and A1 becomes recurrent, implying only π1 is considered.
However, even though it may be the case that Jπ1

< Jπ2
, we may still have Vπ1

> Vπ2
. This example

demonstrates the necessity to pick the terminal AMECs properly, rather than just the union of all
AMECs found, to avoid blocking.

One of the failure modes of Algorithm 1 is in its selection of which AMECs are the necessary AMECs
to reach. In fact, by selecting unnecessary AMECs, the SSP procedure fails to treat some AMECs
as transient states when in fact, maybe, lower cost could have been achieved if they were. One way
to see this is to consider a single directional chain of AMECS (See Figure 4). In the figure, two
policies can be considered: (1) π1 that reaches for A1 and then starts πA1

when A1 is reached, and
(2) π2 that reaches for A2 and then starts πA2

when A2 is reached. It may be the case that Vπ2
< Vπ1

despite Jπ2
> Jπ1

, since it requires a longer cost path to reach the desired AMEC. Despite this
observation, when A1 is selected as terminal states in the subroutine PlanTransient (Algo 3), we
disallow consideration of π2 at all. As explained in the proof of Theorem 5.1, whatever AMECs are
induced by π∗ coincide with AMEC = {Ai,AAi}ki=1. Let Ω = 2AMEC \∅, all non-empty subsets
of AMECs (possible targets). Since all accepting trajectories of π∗ land in an AMEC, then another
way of looking at π∗ is:

π∗ = min
ω∈Ω

min
π∈Π̃(ω)

Vπ

where Π̃(ω) = {π ∈ Πmax|π(s, a) = πAi(s, a) for s ∈ Ai ∈ ω, a ∈ AAi(s)}, which is a policy
class where the only degrees of freedom are outside of ω. In other words, π ∈ Π̃(ω) is followed until
the trajectory hits Ai ∈ ω and then πAi is followed thereafter.

We will reconcile this failure mode of PlanTransient through a modified, nonblocking, subroutine
NoBlockPlanTransient (Algo 6).

Algorithm 6 NoBlockPlanTransient (NB-PT)

Param: States & gains: {(Ai, gi)}ki=1, err. ϵPT > 0
1: Set v(s) =∞ for each s ∈ S.
2: Sample ϕPT times ∀(s, a) ∈ S ×A
3: for ω ∈ 2{Ai}ki=1 \∅ do
4: Set VT (s) = λgi for s ∈ Ai ⊆ ω
5: v′ω, vω, P̃ ← VI(LPT, dPT, ϵ

L
PT, VT )

6: if Es∼d0 [v
′
ω(s)] < Es∼d0 [v(s)] then

7: Set v = v′ω
8: Set π ←greedy policy w.r.t v
9: return π

The proof of correctness follows from the fact that v′ω closely tracks Vπ where π is greedy wrt v′ω.
Then, selecting the smallest Vπ coincides with Vπ∗ .

Proposition D.1 (Proof of Correctness and Convergence of NoBlockPlanTransient). After col-
lecting at most n = Õ( |S|2V̄ 4

c2minϵ
2
PTϵ

4
φ
) samples for each (s, a) ∈ S×A, under the event E and Assumption

1 then with probability 1− δ, , the greedy policy π w.r.t. v′ (Alg. 3, Line 3) is both cost and probability
optimal:

∥Ṽπ − Ṽπ∗∥ < 3ϵPT
2
, |P[π |= φ]− P[π∗ |= φ]| ≤ ϵφ.
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Proof. Suppose vω < v′ω for any ω′ ∈ Ω, with ω ∈ Ω. Fix some ω′. Denote the greedy policies
πvω , πvω′ wrt vω, vω′ . Suppose Ṽπv

ω′
< Ṽπvω

. Then an error was made and

0 ≤ Ṽ P
πvω
− Ṽ P

πv
ω′
≤ Ṽ P

πvω
− Ṽ P̃

πvω
+ Ṽ P̃

πvω
− vω + vω − vω′ + vω′ − Ṽ P̃

πv
ω′

+ Ṽ P̃
πv

ω′
− Ṽ P

πv
ω′

≤ ϵPT
2

+
ϵPT
2

+ 0 + 0 +
ϵPT
2

≤ 3ϵPT
2

where the second line comes from grouping each pair of elements from the first line and applying the
bounds found in proof of Proposition B.12.

On the other hand, suppose p+ ϵφ = P[πvω |= φ] + ϵφ < P[πvω′ |= φ] = p′. The same proof as in
Prop B.13 applies to show that the probability of satisfaction remains close:

0 ≤ Ṽπv
ω′
− Ṽπvω

≤ p′(Jπv
ω′

+ λ

k∑
i=1

p′i
p′
ĝπ̃Ai

)︸ ︷︷ ︸
≤Jπ+λcmax

− p(Jπvω
+ λ

k∑
i=1

pi
p
ĝπ̃Ai

)︸ ︷︷ ︸
≥0

+(p− p′)︸ ︷︷ ︸
<−ϵφ

V̄

ϵφ

< Jπ + λcmax − V̄
≤ 0

showing that |p− p′| < ϵφ.

In particular, since the choice of ω′ was arbitrary, it holds for ω′ achieving ω′ =
minω∈Ω minπ∈Π̃(ω) Vπ. Therefore the previous bounds all hold for with p′ replaced with p∗ and
Ṽ P
πv

ω′
replaced with Ṽ P

π∗ .

It is clear we can think of this non-blocking subroutine as checking the different inputs to Algo
3, which requires ϕPT(ω) = ϵPTcmin

14|S\ω|V̄ 2(1+ 1
ϵφ

)2
, occuring when n = Õ(( |S\ω|V̄ 2

ϵPTϵ2φcmin
)2) samples per

state-action pair have been collected. Taking the maximum over ω ∈ Ω, we have n = Õ(( |S|V̄ 2

ϵPTϵ2φcmin
)2)

samples required for each state-action pair in S ×A.

Remark D.2. Recall S∗ is set of accepting states in Product-MDP X . This subroutine appears
to have an exponential runtime in |S∗|; Ω is at most 2|S

∗|, which is not related to the typical PAC
parameters. In general, Ω is modestly small.

Remark D.3. While the runtime scales poorly with |S∗|, the sample complexity remains PAC.

Remark D.4. We believe it is possible to bring the runtime of the subroutine to be polynomial in
|S∗| by leveraging the MEC quotient structure (see [11]), but leave that for future work.
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E Experiments

E.1 Environments and Details

Figure 5: Environment Illustrations. (Left) Pacman. φ is for the agent, the red triangle, to eventually
collect the food, given by the yellow dot, and always avoid the ghost, the red semicircle with eyes.
(Right) Mountain Car (MC). φ is to eventually reach the flag.

Pacman. This environment (pictured in Fig 5 Left) is a 5x8 gridworld. The starting positions of the
agent (red triangle), food (yellow circle), and ghost (red semicircle with eyes), are as illustrated in
Fig 5. The agent has 4 cardinal directions at each state in addition to a “do nothing” action. The LTL
specification is to eventually reach the food and to forever avoid the ghost “F(food) & G(!ghost)”,
where the food state is labelled “food” and the ghost state is labelled “ghost”. Once the food is
picked up, it is gone. The ghost chases the agent (following the shortest path) with probability .4 and
chooses a random action with probability .6. Though this is an infinite horizon problem, as there is no
terminal state, we allow a maximum horizon of H = 100 in our experiments. We track how long the
agent has avoided the ghost and whether the agent has picked up the food. To simplify verification,
we say the agent has satisfied the spec if the food has been picked up and the ghost has been avoided
for all H timesteps. The cost function is defined as 1 everywhere.

For the shaped LCRL baseline, we use progression through the LDBA as a “reward”: if the agent
progresses to a new state in the automaton then the cost of that transition is .1 instead of 1. The authors
of LCRL used similar ideas in their code as well. However, we must note that progression-based cost
shaping eliminates any guarantee of LTL satisfaction. An agent is incentivized to find cycles in the
LDBA rather than find an accepting state. In the case when no such cycles exist, then this form of
cost shaping can work.

Mountain Car This domain (pictured in Fig 5 Right) is a discretization of the Mountain Car domain
from OpenAI [14], with state-space given by tuple (position, velocity) and cost of 1. We discretize
the position space into 32 equal size bins and the velocity into 32 geometrically-spaced bins, allowing
more granularity around low velocity than high velocity, making 322 bins (states) in the MDP. The
starting state is the standard MC starting state, but then placed in the appropriate bin. A bin can be
converted back to (pos,vel), for purposes of sampling from P , by uniformly selecting from the valid
positions/velocities implied by the bin. The agent has 3 actions: accelerate left, do nothing, accelerate
right. The specification is to eventually reach the goal state “F(goal)”, the standard task, where any
bin with position beyond the flag position is labelled “goal”.

For the shaped LCRL baseline, we use a cost function of c = .1 if the change in position is positive
and the agent accelerated right, likewise if the change is negative and the agent accelerated left,
otherwise c = 1. This cost function should incentivize the agent to seek actions which make the car
go faster. Unlike the previous experiment, here cost-shaping has no effect on the guarantee of LTL
satisfaction.

Safe Delivery This domain (pictured in Fig 1 Right) is a 4-state MDP: (0) start state, (1) sniffed
packet, (2) stolen packet (3) delivered packet. In each state, the agent has two actions, A and B.
The transition function P in the MDP is given by P (0, A, 1) = 1, P (0, B, 2) = .5, P (0, B, 3) = .5,
P (1, A, 3) = 1, P (1, B, 3) = 1, P (2, A, 2) = 1, P (2, B, 2) = 1, P (3, A, 3) = 1, P (3, B, 3) = 1.
In other words, choosing action A in the initial state immediately leads to a sniffed packet, which
subsequently leads to the packet being delivered by any action. Alternatively, choosing action B in
the initial state has a 50− 50 chance of having the packet stolen or immediately delivered, regardless

34



of action. Once, stolen, it remains stolen. Once delivered, the packet remains delivered, regardless of
action. The states are labelled as L(0) = L(3) =“safe”. The specification is to always stay in safe
states: “G(safe)”. Let all the costs be 1. The Product-MDP can be seen in Figure 2 Right.

The probability-optimal and cost-optimal policy is then choosing B is state 0 and then arbitrarily
afterward. The maximum probability of satisfying the policy is 50% because 50% of the time the
packet gets stolen. Though this is an infinite horizon problem, as there is no terminal state, we allow
a maximum horizon of H = 100 in our experiments. Thus, the average number of timesteps should
be .5 ∗H = 50.

Similarly to Pacman, for the shaped LCRL baseline, we use progression through the LDBA as a
“reward”: if the agent progresses to a new state in the automaton then the cost of that transition is .5
instead of 1.

Infinite Loop This environment (pictured in Fig 1 Left) is a 2x5 gridworld. The agent starts in the
bottom right corner. The agent has 4 cardinal directions at each state in addition to a “do nothing”
action. We consider two specifications:

φ1: The LTL specification is to perpetually visit the office (in the top right corner) followed by the
coffee room (top left corner): “GF(o & XFc)”, where the office is labelled o and the coffee room is
labelled c. The Product MDP is illustrated in Figure 2 Center.

φ2: We require the agent to

“G((c -> XXXXXo) & (o ->XXXXXc)) & Xo”, (13)

meaning to get to first get to office in 1 step, then repeatedly reach the coffee room in 5 steps followed
by the office in 5 steps.

Similarly to Pacman, for the shaped LCRL baseline, we use progression through the LDBA as a
“reward”: if the agent progresses to a new state in the automaton then the cost of that transition is .5
instead of 1.

E.2 Hyperparameters

We use the following hyperparameters for our experiments. Each set of hyperparameters was run
with 20 seeds, with the exception of Safe Delivery which was run with 40 seeds.

Table 6: Hyperparameters

Param(s) Infinite Loop φ1 Infinite Loop φ2 Safe Delivery Pacman MC
V̄ 50 50 10 100 150
cmin 1 1 1 1 1
cmax 1 1 1 1 1
φ GF(o & XFc) See φ2 in (13) G(!unsafe) F(food0) & G!ghost Fgoal
ϵ 3 3 3 3 10
δ .1 .1 .1 .1 .1

LCRL Params Infinite Loop Infinite Loop 2 Safe Delivery Pacman MC
Max Traj len. 100 100 100 100 200

γ .99 .99 .99 .99 .95
Learning rate .95 .95 .95 .95 .9

E.3 Additonal Results

In this section we examine additional results for the experiments we ran.

For the Infinite Loop environment under φ2, we see (Figure 6 Left Column) that our method is able
to follow the trajectory specified by φ2 even in low sample regimes. The learning signal for LCRL is
very poor as the episode terminates extremely quickly if the agent does not get to the next location
that it needs to be in within the allotted time. The shaped LCRL only does marginally better, but still
struggles to satisfy the LTL with any probability.

For the Safe Delivery environment, we see (Figure 6 Left Right) that our method picks out the
probability-optimal policy. LCRL is nearly optimal. The sparsity of this problem is significantly less
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Figure 6: Additional Results. (Left Column) Infinite Loop 2. φ is a specific trajectory that needs to be
followed: first get to the office in 1 timestep and then the coffee room in 5 and then back to the office
in 5, over and over. (Right) Safe Delivery (Right Column). φ is to always be safe.

as the feedback for spec satisfaction verification comes after a single timestep. Interestingly, cost
shaping in Safe Delivery performs worse than straight LCRL. This isn’t surprising since, as noted,
the verification feedback comes after a single timestep and is more important than any cost-shaping.
However, cost-shaping muddles the feedback making shaped LCRL perform worse. We speculate that
with only a few hundred or thousand more samples, both LCRL and shaped LCRL would reach the
optimal policy. Recall that LCRL and shaped LCRL are not the same as Q-learning, as they operate
in the product-MDP rather than the underlying MDP. Thus, these observations are still consistent with
our Motivation section (Section 2), insisting that Q-learning would have trouble in this environment.

E.4 Policies

(1)

(1)

(2)

(3)

Figure 7: Types of policies for different φ. (Left) Infinite Loop φ1. φ1 is to go perpetually walk
between the office and the coffee room (Right) Infinite Loop φ2. φ2 is to get to the office in 1 time
step then perpetually, take 5 timesteps to get to the coffee room and 5 steps back to the office.

In this section we examine the policies induced by different specificity in specifications. In particular,
we consider the Infinite Loop environment with two different specifications φ1, φ2, see Section E.1,
E.2 for a description. For φ1, we only require that the agent “eventually” navigate between the office
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and coffee room. The agent is incentivized to stay in place (create a cost-1 cycle) for as long as
possible and very infrequently take a random action. Of course, eventually taking random actions
will loop the agent between the office and coffee room. This behavior is illustrated in Figure 7 Left,
where the agent is always in LDBA state 1 and takes random actions with low probability and does
nothing with high probability. It takes exponential time for the agent to make a single loop between
the office and coffee room.

On the other hand, we may want the agent to move quickly. In this case, we can be more specific and
use specification φ2. The behavior for an agent satisfying φ2 is illustrated in Figure 7 Right. The
agent gets to LDBA state 2 by first reaching the office in a single time step. Then the agent loops
between LDBA states 2 and 3 by reaching the coffee room and office, repeatedly, within the allotted
time. If the agent does not reach the office or chair within the allotted time, there is a fourth LDBA
state (unpictured) which is a sink denoting failure of the spec. In essence, the LDBA has created the
options, or hierarchy, of solving the problem, as noted in Section 2. It takes 10 timesteps for the agent
to make a single loop between the office and coffee room.

Notice that the high level description of the task is unchanged, but the details of how the task is
accomplished is much more specific in φ2 rather than φ1. This demonstrates that writing LTL task
specifications is flexible, but requires thought about “how” the task should be accomplished.
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