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Abstract

We offer an experimental benchmark and empirical study for off-policy policy
evaluation (OPE) in reinforcement learning, which is a key problem in many safety
critical applications. Given the increasing interest in deploying learning-based
methods, there has been a flurry of recent proposals for OPE method, leading to
a need for standardized empirical analyses. Our work takes a strong focus on
diversity of experimental design to enable stress testing of OPE methods. We
provide a comprehensive benchmarking suite to study the interplay of different
attributes on method performance. We also distill the results into a summarized
set of guidelines for OPE in practice. Our software package, the Caltech OPE
Benchmarking Suite (COBS), is open-sourced and we invite interested researchers
to further contribute to the benchmark.

1 Introduction

Reliably leveraging logged data for decision making is an important milestone for realizing the full
potential of reinforcement learning. A key component is the problem of off-policy policy evaluation
(OPE), which aims to estimate the value of a target policy using only pre-collected historical (logging)
data generated by other policies. Given its importance, the research community actively advances
OPE techniques, both for the bandit [15, 3, 49, 56, 32, 36] and reinforcement learning settings
[26, 15, 16, 33, 58, 54, 40, 59, 10]. These new developments reflect practical interests in deploying
reinforcement learning to safety-critical situations [31, 57, 3, 1], and the increasing importance of
off-policy learning and counterfactual reasoning [12, 52, 37, 30, 34, 41]. OPE is also similar to the
dynamic treatment regime problem in the causal inference literature [39].

In this paper, we present the Caltech OPE Benchmarking Suite (COBS), which benchmarks OPE
techniques via experimental designs that give thorough considerations to factors that influence
performance. The reality of method performance, as we will discuss, is nuanced and comparison
among different estimators is tricky without pushing the experimental conditions along various
dimensions. Our philosophy and contributions can be summarized as follows:
• We establish a benchmarking methodology that considers key factors that influence OPE perfor-

mance, and design a set of domains and experiments to systematically expose these factors. The
proposed experimental domains are complementary to continuous control domains from recent
offline RL benchmarks [18, 17]. We differ from these recent benchmarks in two important ways:

1. COBS allows researchers fine-grained control over experimental design, other than just access
to a pre-collected dataset. The offline data can be generated “on-the-fly” based on experimental
criteria, e.g., the divergence between behavior and target policies.

2. We offer significant diversity in experimental domains, covering a wide range of dimensionality
and stochasticity. Together, the goal of this greater level of access is to enable a deeper look at
when and why certain methods work well.

• As a case study, we select a representative set of established OPE baseline methods, and test them
systematically. We further show how to distill the empirical findings into key insights to guide
practitioners and inform researchers on directions for future exploration.
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• COBS is an extensive software package that can interface with new environments and methods to
run new OPE experiments at scale.1 Given the fast-changing nature of this active area of research,
our package is designed to accommodate the rapidly growing body of OPE estimators. COBS is
already actively used by multiple research groups to benchmark new algorithms.

Prior Work. Empirical benchmarks have long contributed to the scientific understanding, advance-
ment, and validation of machine learning techniques [8, 6, 7, 46, 14, 13]. Recently, many have called
for careful examination of empirical findings of contemporary deep learning and deep reinforcement
learning efforts [23, 35]. As OPE is central to real-world applications of reinforcement learning,
proper benchmarking is critical to ensure in-depth understanding and accelerate progress. While many
recent methods are built on sound mathematical principles, a notable gap in the current literature
is a standard for benchmarking empirical studies, with perhaps a notable exception from the recent
DOPE [18] and D4RL benchmarks [17].

Compared to prior complementary work on OPE evaluation for reinforcement learning [17, 18], our
benchmark offers two main advantages. First, we focus on maximizing reproducibility and nuanced
experimental control with minimal effort, covering data generation and fine-grained control over
factors such as relative “distance” between the offline data distribution and the distribution induced
by evaluation policies. Second, we study a diverse set of environments, spanning range of desiderata
such as stochastic-vs-deterministic and different representations for the same underlying environment.
Together, these attributes enable our benchmarking suite to conduct systematic analyses of the method
performance under different scenarios, and provide a holistic summary of the challenges one may
encounter in different scenarios.

Background & Notation. As per RL standard, we represent the environment by 〈X,A,P,R, γ〉. X
is the state space (or observation space in the non-Markov case). OPE is typically considered in the
episodic RL setting. A behavior policy πb generates a historical data set, D = {τ i}Ni=1, of N trajec-
tories (or episodes), where i indexes over trajectories, and τ i = (xi0, a

i
0, r

i
0, . . . , x

i
T−1, a

i
T−1, r

i
T−1).

The episode length T is assumed to be fixed for notational convenience. Given a desired
evaluation policy πe, the OPE problem is to estimate the value V (πe), defined as: V (πe) =

Ex∼d0
[∑T−1

t=0 γtrt|x0 = x
]
, with at ∼ πe(·|xt), xt+1 ∼ P (·|xt, at), rt ∼ R(xt, at), and d0 ⊆ X

is the initial state distribution.

2 Benchmarking Design & Methodology

2.1 Design Philosophy

The design philosophy of the Caltech OPE Benchmarking Suite (COBS) starts with the most promi-
nent decision factors that can make OPE difficult. These factors come from both the existing literature
and our own experimental study, which we will further discuss. We then seek to design experimental
conditions that cover a diverse range of these factors. As a sub-problem within the broader reinforce-
ment learning problem class, OPE experiments in existing literature gravitate towards commonly
used RL domains. Unsurprisingly, the most common experiments belong to the Mujoco group
of deterministic continuous control tasks [53], or discrete domains that operate via OpenAI Gym
interface [4]. For OPE, high-dimensional domains such as Atari [2] appear less often, but are also
natural candidates for OPE testing. We selectively pick from these domains as well as design new
domains, with the goal of establishing refined control over the decision factors.

Design Factors. We consider several domain characteristics that are often major factors in perfor-
mance of OPE methods:
1. Horizon length. Long horizons can lead to catastrophic failure in some OPE methods due to an

exponential blow-up in some of their components [32, 26, 33].
2. Reward sparsity. Sparse rewards represent a difficult credit assignment problem in RL. This factor

is often not emphasized in OPE, and arguably goes hand-in-hand with horizon length.2
3. Environment stochasticity. Popular RL domains such as Mujoco and Atari are mostly determinis-

tic. This is a fundamental limitation in many existing empirical studies since many theoretical

1https://github.com/clvoloshin/COBS
2Considered in isolation, long horizons may not be an issue if the reward signal is dense.
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challenges to RL only surface in a stochastic setting. A concrete example is the famous double
sampling problem [11], which is not applicable in many contemporary RL benchmarks.

4. Unknown behavior policy. This is related to the source of the collected data. The data may come
from one or a more policies which may not be known. For example, existing dataset benchmarks,
such as D4RL [17] can be considered to come from an unknown behavior policy. Some methods
will require behavior policy estimation, thus introducing some bias.

5. Policy and distribution mismatch. The relative difference between the evaluation and behavior
policy can play a critical role in the performance of many OPE methods. This difference induces
a distribution mismatch between the dataset D and the dataset that would have been produced
had we run the evaluation policy. Performing out-of-distribution estimation is a key challenge
for robust OPE. We focus on providing a systematic way to stress test OPE methods under this
mismatch, which we accomplish by offering a control knob for flexible data generation to induce
various degrees of mismatch.

6. Model misspecification. Model misspecification refers to the insufficient representation power of
the function class used to approximate different objects of interest, whether the transition dynamics,
value functions, or state distribution density ratio. In realistic applications, it is reasonable to
expect at least some degree of misspecification. We study the effect of misspecification via two
controlled scenarios: (i) we start with designing simple domains to test OPE methods under tabular
representation and (ii) we test the same OPE methods and same tabular data generation process,
but the input representation for OPE methods is now modified to expose the impact of choosing a
different function class for representation.

2.2 Domains
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Figure 1: Depicting one of the dimensions which
COBS provides control. For the Mountain Car en-
vironment, we can select either a tabular, standard
coordinate-based, or pixel-based representation of
the state while holding other factors fixed.

Ultimately, many of the aforementioned factors
are intertwined and their usefulness in evaluat-
ing OPE performance cannot be considered in
isolation. However, they serve as a valuable
guide in our selection of benchmark environ-
ments. To that end, our benchmark suite in-
cludes eight environments. We use two standard
RL benchmarks from OpenAI [5]. As many
standard RL benchmarks are fixed and deter-
ministic, we design six additional environments
that allow control over different design factors.
Figure 1 depicts one such design factor: the
representation complexity.

Graph: A flexible discrete environment that can vary in horizon, stochasticity, and sparsity.

Graph-POMDP: An extension of Graph to a POMDP setting, where selected information is omitted
from the observations that form the behavior data. This enables controlled study of the effect of
insufficient representation power relative to other settings in the Graph domain above.

Gridworld (GW): A gridworld design that offers larger state and action space than the Graph
domains, longer horizon, and similarly flexible design choices for other environmental factors. Using
some version of gridworld is standard across many RL experiments. Gridworld enables simple
integration of various designs, and fast data collection.

Pixel-Gridworld (Pix-GW): A scaled-up domain from Gridworld which enables pixel-based rep-
resentation of the state space. While such usage is not standard in existing literature, this design
offers compelling advantage over many existing standard RL benchmarks. First, this domain enables
simple controlled experiments to understand the impact of high-dimensional representation on OPE
performance, where the ground truth of various quantities to be estimated is readily obtainable thanks
to the access to underlying simpler grid representation. Second, this domain effectively simulates
high-dimensional experiments with easily tuned experimental conditions, e.g., degree of stochasticity.
This design freedom is not available with many currently standard RL benchmarks.

Mountain Car (MC): A standard control domain, which is known to have challenging credit
assignment due to sparsity of the reward. Our benchmark for this standard domains allows for
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function approximation to vary between a linear model and feed-forward neural network, in order to
highlight the effects of model misspecification.

Pixel Mountain Car (Pix-MC): A modified version of Mountain Car where the state input is
pixel-based, testing the methods’ ability to work in high dimensional settings.

Tabular Mountain Car (Graph-MC) A simplified version of Mountain Car to a graph, allowing us
to complete the test for model misspecification by considering the tabular case.

Atari (Enduro) A pixel-based Atari domain. Note that all Atari environments are deterministic and
high-dimensional. Instead of choosing many different Atari domains to study, we instead opt to select
Enduro as the representative Atari environment, due to its sparsity of reward (and commonly regarded
as a highly challenging task). All Atari environments share similar interaction protocol, and can be
seamlessly integrated into COBS, if desired.

All together, our benchmark consists of 8 environments with characteristics summarized in Table 1.
Complete descriptions can be found in Appendix F. All environments have finite action spaces.

Table 1: Environment characteristics
Environment Graph Graph-MC MC Pix-MC Enduro G-POMDP GW Pix-GW

Is MDP? yes yes yes yes yes no yes yes
State desc. pos. pos. [pos, vel] pixels pixels pos. pos. pixels
T 4 or 16 250 250 250 1000 2 or 8 25 25
Stoch Env? variable no no no no no no variable
Stoch Rew? variable no no no no no no no
Sparse Rew? variable terminal terminal terminal dense terminal dense dense
Q̂ Class tabular tabular linear/NN NN NN tabular tabular NN
Initial state 0 0 variable variable gray img 0 variable variable
Absorb. state 2T 22 [.5,0] img([.5,0]) zero img 2T 64 zero img
Frame height 1 1 2 2 4 1 1 1
Frame skip 1 1 5 5 1 1 1 1

2.3 Experiment Protocol

Selection of Policies. We use two classes of policies. The first is state-independent with some
probability of taking any available action. For example, in the Graph environment with two actions,
π(a = 0) = p, π(a = 1) = 1 − p where p is a parameter we can control. The second is a state-
dependent ε−Greedy policy. We train a policy Q∗ (using value iteration or DDQN [22]) and then
vary the deviation away from the policy. Hence ε−Greedy(Q∗) implies we follow a mixed policy
π = arg maxaQ

∗(x, a) with probability 1− ε and uniform with probability ε. Here ε is a parameter
we can control.

Most OPE methods explicitly require absolute continuity among the policies (πb > 0 whenever
πe > 0). Thus, all policies will remain stochastic with this property maintained.

Data Generation & Metrics. Each experiment depends on specifying an environment and its
properties, behavior policy πb, evaluation policy πe, and number of trajectories N from rolling-out πb
for historical data. The true on-policy value V (πe) is the Monte-Carlo estimate via 10, 000 rollouts
of πe. We repeat each experiment m = 10 times with different random seeds. We judge the quality
of a method via two metrics:

• Relative mean squared error (Relative MSE): 1
m

∑m
i=1

(V̂ (πe)i− 1
m

∑m
j=1 V (πe)j)

2

( 1
m

∑m
j=1 V (πe)j)2

, which allows a

fair comparison across different conditions.3

• Near-top Frequency: For each experimental condition, we include the number of times each method
is within 10% of the best performing one to facilitate aggregate comparison across domains.

Implementation & Hyperparameters. COBS allows running experiments at scale and easy inte-
gration with new domains and techniques for future research. The package consists of many domains
and reference implementations of OPE methods.

3The metric used in prior OPE work is typically mean squared error: MSE= 1
m

∑m
i=1(V̂ (πe)i − V (πe)i)

2.
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Hyperparameters are selected based on publication, code release or author consultation. We maintain
a consistent set of hyperparameters for each estimator and each environment across experimental
conditions (see hyperparameter choice in appendix Table 12).4

2.4 Baselines

OPE methods were historically categorized into importance sampling methods, direct methods, or
doubly robust methods. This demarcation was first introduced for contextual bandits [15], and later
extended to the RL setting [26]. Some recent methods have blurred the boundary of these categories.
Examples include Retrace(λ) [37] that uses a product of importance weights of multiple time steps
for off-policy Q correction, and MAGIC [51] that switches between importance weighting and
direct methods. In this benchmark, we propose to group OPE into three similar classes of methods,
but with expanded definition for each category: Inverse Propensity Scoring, Direct Methods, and
Hybrid Methods. For the current benchmark, we select representative established baselines from each
category. Appendix E contains a full description of all methods under consideration.

Inverse Propensity Scoring (IPS) We consider the main four variants: Importance Sampling (IS),
Per-Decision Importance Sampling (PDIS), Weighted Importance Sampling (WIS) and Per-Decision
WIS (PDWIS). IPS has a rich history in statistics [44, 20, 24], with successful crossover to RL [45].
The key idea is to reweight the rewards in the historical data by the importance sampling ratio between
πe and πb, i.e., how likely a reward is under πe versus πb.

Direct Methods (DM) While some direct methods make use of importance weight adjustments,
a key distinction of direct methods is the focus on regression-based techniques to (more) directly
estimate the value functions of the evaluation policy (Qπe or V πe). This is an area of very active
research with rapidly growing literature. We consider 8 different direct approaches, taken from the
following respective families of direct estimators:

Model-based estimators Perhaps the most commonly used DM is Model-based (also called approxi-
mate model, denoted AM), where the transition dynamics, reward function and termination condition
are directly estimated from historical data [26, 43]. The resulting learned MDP is then used to
compute the value of πe, e.g., by Monte-Carlo policy evaluation. There are also some recent variants
of the model-based estimator, e.g., [60].

Value-based estimators Fitted Q Evaluation (FQE) is a model-free counterpart to AM, and is function-
ally a policy evaluation counterpart to batch Q learning [30]. Qπ(λ) & Retrace(λ) & Tree-Backup(λ)
Several model-free methods originated from off-policy learning settings, but are also natural for OPE.
Qπ(λ) [21] can be viewed as a generalization of FQE that looks to the horizon limit to incorporate
the long-term value into the backup step. Retrace(λ) [37] and Tree-Backup(λ) [45] also use full
trajectories, but additionally incorporate varying levels of clipped importance weights adjustment.
The λ-dependent term mitigates instability in the backup step, and is selected based on experimental
findings of [37].

Regression-based estimators Direct Q Regression (Q-Reg) & More Robust Doubly-Robust (MRDR)
[16] propose two direct methods that make use of cumulative importance weights in deriving the
regression estimate for Qπe , solved through a quadratic program. MRDR changes the objective of
the regression to that of directly minimizing the variance of the Doubly-Robust estimator.

Minimax-style estimators [33] recently proposed a method for the infinite horizon setting - we refer to
this estimator as IH. While IH can be viewed as a Rao-Blackwellization of the IS estimator, we include
it in the DM category because it solves the Bellman equation for state distributions and requires
function approximation, which are more characteristic of DM. IH shifts the focus from importance
sampling over action sequences to importance ratio between state density distributions induced by πb
and πe. Starting with IH, this style of minimax estimator has recently attracted significant attention
in OPE literature, including state-action extension of IH [54, 25] and DICE family of estimators
[40, 61, 59, 10]. For our benchmarking purpose, we choose IH as the representative of this family.

Hybrid Methods (HM) Hybrid methods subsume doubly robust-like approaches, which combine
aspects of both IPS and DM. Standard doubly robust OPE (denoted DR) [26] is an unbiased estimator
that leverages DM to decrease the variance of the unbiased estimates produced by importance
sampling techniques: Other HM include Weighted Doubly-Robust (WDR) and MAGIC. WDR

4In practice, hyperparameter tuning is not practical for OPE due to a lack of validation signal.
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replaces the importance weights with self-normalized importance weights (similar to WIS). MAGIC
introduces adaptive switching between DR and DM; in particular, one can imagine using DR to
estimate the value for part of a trajectory and then using DM for the remainder. Using this idea,
MAGIC [51] finds an optimal linear combination among a set that varies the switch point between
WDR and DM. Note that any DM that returns Q̂πe(x, a; θ) yields a set of corresponding DR, WDR,
and MAGIC estimators. As a result, we consider 21 hybrid approaches in our experiments.

3 Empirical Evaluation

We evaluate 33 different OPE methods by running thousands of experiments across the 8 domains.
Due to limited space, we show only the results from selected environmental conditions in the next
section. The full detailed results, with highlighted best method in each class, are available in the
appendix. The goal of the evaluation is to demonstrate the flexibility of the benchmark suite to
systematically test the different factors of influence. We synthesize the results, and then present
further considerations and directions for research in Section 4.

3.1 What is the best method?

The first important takeaway is that there is no clear-cut winner: no single method or method class
is consistently the best performer, as multiple environmental factors can influence the accuracy of
each estimator. With that caveat in mind, based on the aggregate top performance metrics, we can
recommend from our selected methods the following for each method class (See Figure 3 right,
appendix Table 15, and appendix Table 3).

Inverse propensity scoring (IPS). In practice, weighted importance sampling, which is biased, tends
to be more accurate and data-efficient than unbiased basic importance sampling methods. Among the
four IPS-based estimators, PDWIS tends to perform best (Figure 3 left).

Direct methods (DM). Generally, FQE, Qπ(λ), and IH tend to perform the best among DM (ap-
pendix Table 3). FQE tends to be more data efficient and is the best method when data is limited
(Figure 5). Qπ(λ) generalizes FQE to multi-step backup, and works particularly well with more data,
but is computationally expensive in complex domains. IH is highly competitive in long horizons
and with high policy mismatch in a tabular setting (appendix Tables 7, 8). In pixel-based domains,
however, choosing a good kernel function for IH is not straightforward, and IH can underperform
other DM (appendix Table 11). We provide a numerical comparison among direct methods for tabular
(appendix Figure 17) and complex settings (Figure 3 center).

Hybrid methods (HM). With the exception of IH, each DM corresponds to three HM: standard
doubly robust (DR), weighted doubly robust (WDR), and MAGIC. For each DM, its WDR version
often outperforms its DR version. MAGIC can often outperform WDR and DR. However, MAGIC
comes with additional hyperparameters, as one needs to specify the set of partial trajectory length
to be considered. Unsurprisingly, their performance highly depends on the underlying DM. In our
experiments, FQE and Qπ(λ) are typically the most reliable: MAGIC with FQE or MAGIC with
Qπ(λ) tend to be among the best hybrid methods (see appendix Figures 23 - 27).

3.2 A recipe for method selection

Figure 2: General Guideline Decision Tree.

Figure 2 summarizes our general guideline for
navigating key factors that affect the accuracy
of different estimators. To guide the readers
through the process, we now dive further into
our experimental design to test various factors,
and discuss the resulting insights.

Do we potentially have representation mis-
match? Representation mismatch comes from
two sources: model misspecification and poor
generalization. Model misspecification refers
to the insufficient representation power of the
function class used to approximate either the
transition dynamics (AM), value function (other DM), or state distribution density ratio (in IH).
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Method Near-top Freq.

MAGIC FQE 30.0%
DM FQE 23.7%
IH 19.0%
WDR FQE 17.8%
MAGIC Qπ(λ) 17.3%

Figure 3: Left: (Graph domain) Comparing IPS (and IH) under short and long horizon. Mild policy
mismatch setting. PDWIS is often best among IPS. But IH outperforms in long horizon. Center:
(Pixel-MC) Comparing direct methods in high-dimensional, long horizon setting. Relatively large
policy mismatch. FQE and IH tend to outperform. AM is significantly worse in complex domains.
Retrace(λ), Q(λ) and Tree-Backup(λ) are very computationally expensive and thus excluded. Right:
(Top Methods) The top 5 methods which perform the best across all conditions and domains.
Having a tabular representation controls for representation mismatch by ensuring adequate function
class capacity, as well as zero inherent Bellman error (left branch, Fig 2). In such cases, we may still
suffer from poor generalization without sufficient data coverage, which depends on other factors in
the domain settings.

The effect of representation mismatch (right branch, Fig 2) can be understood via two scenarios:

• Misspecified and poor generalization: We expose the impact of this severe mismatch scenario
via the Graph POMDP construction, where selected information are omitted from an otherwise
equivalent Graph MDP. Here, HM substantially outperforms DM (Figure 4 right versus left).

• Misspecified but good generalization: Function classes such as neural networks have powerful
generalization ability, but may introduce bias and inherent Bellman error5 [38, 9] (see linear
vs. neural networks comparison for Mountain Car in appendix Fig 14). Still, powerful function
approximation makes (biased) DM very competitive with HM, especially under limited data and in
complex domains (see pixel-Gridworld in appendix Fig 28-30). However, function approximation
bias may cause serious problems for high dimensional and long horizon settings. In the extreme
case of Enduro (very long horizon and sparse rewards), all DM fail to convincingly outperform a
naïve average of behavior data (appendix Fig 13).

Short horizon vs. Long horizon? It is well-known that IPS methods are sensitive to trajectory
length [32]. Long horizon leads to an exponential blow-up of the importance sampling term, and is
exacerbated by significant mismatch between πb and πe. This issue is inevitable for any unbiased
estimator [26] (a.k.a., the curse of horizon [33]). Similar to IPS, DM relying on importance weights
also suffer in long horizons (appendix Fig 17), though to a lesser degree. IH aims to bypass the effect
of cumulative weighting in long horizons, and indeed performs substantially better than IPS methods
in very long horizon domains (Fig 3 left).

A frequently ignored aspect in previous OPE work is a proper distinction between fixed, finite horizon
tasks (IPS focus), infinite horizon tasks (IH focus), and indefinite horizon tasks, where the trajectory
length is finite but varies depending on the policy. Many applications should properly belong to the
indefinite horizon category.6 Applying HM in this setting requires proper padding of the rewards
(without altering the value function in the infinite horizon limit) as DR correction typically assumes
fixed length trajectories.

How different are behavior and target policies? Similar to IPS, the performance of DM is neg-
atively correlated with the degree of policy mismatch. Figure 5 shows the interplay of increasing
policy mismatch and historical data size, on the top DM in the deterministic gridworld. We use
(supa∈A,x∈X

πe(a|x)
πb(a|x) )T as an environment-independent metric of mismatch between the two policies.

The performance of the top DM (FQE, Qπ(λ), IH) tend to hold up better than IPS methods when the
policy gap increases (appendix Figure 19). FQE and IH are best in the small data regime, and Qπ(λ)
performs better as data size increases (Figure 5). Increased policy mismatch weakens the DM that
use importance weights (Q-Reg, MRDR, Retrace(λ) and Tree-Backup(λ)).

5Inherent Bellman error is defined as supg∈F inff∈F||f − Tπg||dπ , where F is function class chosen for
approximation, and dπ is state distribution induced by evaluation policy π.

6Applying IH in the indefinite horizon case requires setting up an absorbing state that loops over itself with
zero terminal reward.
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Figure 4: Comparing IPS versus Direct methods versus Hybrid methods under short and long
horizon, large policy mismatch and large data. Left: (Graph domain) Deterministic environment.
Center: (Graph domain) Stochastic environment and rewards. Right: (Graph-POMDP) Model
misspecification (POMDP). Minimum error per class is shown.

Figure 5: (Gridworld domain) Errors are directly correlated with policy mismatch but inversely
correlated with data size. We pick the best direct methods for illustration. The two plots represent the
same figure from two different vantage points.
Do we have a good estimate of the behavior policy? Often the behavior policy may not be known
exactly and requires estimation, which can introduce bias and cause HM to underperform DM,
especially in low data regime (e.g., pixel gridworld appendix Figure 28-30). Similar phenomenon
was observed in the statistics literature [29]. As the data size increases, HMs regain the advantage as
the quality of the πb estimate improves.

Is the environment stochastic or deterministic? While stochasticity affects all methods by straining
the data requirement, HM are more negatively impacted than DM (Figure 4 center, Figure 18). This
can be justified by e.g., the variance analysis of DR, which shows that the variance of the value
function with respect to stochastic transitions will be amplified by cumulative importance weights
and then contribute to the overall variance of the estimator; see [26, Theorem 1] for further details.
We empirically observe that DM frequently outperform their DR versions in the small data case
(Figure 18). In a stochastic environment and tabular setting, HM do not provide significant edge over
DM, even in short horizon case. The gap closes as the data size increases (Figure 18).

3.3 Challenging common wisdom

To illustrate the value of a flexible benchmarking tool, in this section we further synthesize the
empirical findings and stress-test several commonly held beliefs about the high-level performance of
OPE methods.

Is HM always better than DM? No. Overall, DM are surprisingly competitive with HM. Under
high-dimensionality, long horizons, estimated behavior policies, or reward/environment stochasticity,
HM can underperform simple DM, sometimes significantly (e.g., see appendix Figure 18).

Concretely, HM can perform worse than DM in the following scenarios that we tested:
• Tabular with large policy mismatch, or stochastic environments (appendix Figure 18, Table 5, 8).
• Complex domains with long horizon and unknown behavior policy (app. Figure 28-30, Table 10).
When data is sufficient, or model misspecification is severe, HM provides consistent gains over DM.

Is horizon length the most important factor? No. Despite conventional wisdom suggesting IPS
methods are most sensitive to horizon length, we find that this is not always the case. Policy diver-
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gence supa∈A,x∈X
πe(a|x)
πb(a|x) can be just as, if not more, meaningful. For comparison, we designed two

scenarios with identical mismatch (supa∈A,x∈X
πe(a|x)
πb(a|x) )T as defined in Section 3.2 (see appendix

Tables 13, 14). Starting from a baseline scenario of short horizon and small policy divergence (ap-
pendix Table 12), extending horizon length leads to 10× degradation in accuracy, while a comparable
increase in policy divergence causes a 100× degradation.

How good is model-based direct method (AM)? AM can be among the worst performing direct
methods (appendix Table 3). While AM performs well in tabular setting in the large data case
(appendix Figure 17), it tends to perform poorly in high dimensional settings with function approxi-
mation (e.g., Figure 3 center). Fitting the transition model P (x′|x, a) is often more prone to small
errors than directly approximating Q(x, a). Model fitting errors also compound with long horizons.

4 Discussion and Future Directions

Finally, we close with a brief discussion on some limitations common to recent OPE benchmarks and
more generally OPE experimental studies, and point to areas of development for future studies.

Lack of short-horizon benchmark in high-dimensional settings. Evaluation of other complex RL
tasks with short horizon is currently beyond the scope of our study, due to the lack of a natural
benchmark. For contextual bandits, it has been shown that while DR is highly competitive, it is
sometimes substantially outperformed by DM [56]. New benchmark tasks should have longer horizon
than contextual bandits, but shorter than typical Atari games. We also currently lack natural stochastic
environments in high-dimensional RL benchmarks. An example candidate for medium horizon,
complex OPE domain is NLP tasks such as dialogue.

Other OPE settings. We outline practically relevant settings that can benefit from benchmarking:
• Missing data coverage. A common assumption in the analysis of OPE is a full support assumption:
πe(a|x) > 0 implies πb(a|x) > 0, which often ensure unbiasedness of estimators [45, 33, 15].
This assumption is often not verifiable in practice. Practically, violation of this assumption requires
regularization of unbiased estimators to avoid ill-conditioning [33, 16]. One avenue to investigate
is to optimize the bias-variance trade-off when the full support is not applicable.

• Confounding variables. Existing OPE research often assumes that the behavior policy chooses
actions solely based on the state. This assumption is often violated when the decisions in the
historical data are made by humans instead of algorithms, who may base their decisions on variables
not recorded in the data, causing confounding effects. Tackling this challenge, possibly using
techniques from causal inference [50, 42], is an important future direction.

• Strategic Environmental Behavior. Most OPE methods have focused exclusively on single-agent
scenarios under well-defined MDP. Realitic applications of offline RL may have to deal with
nonstationary and partial observability induced by strategic behavior from multiple agents [62].
There is currently a lack of a compelling domain to study such a setting.

Evaluating new OPE estimators. For our empirical evaluation, we selected a representative set of
established baseline approaches from multiple OPE method families. Currently this area of research
is very active and as such, new OPE estimators have been and will continue to be proposed. We
discuss several new minimax style estimators, notably the DICE family in section 2.4. A minimax-
style estimator has also been recently proposed for the model-based regime [55]. Among the
ideas that use marginalized state distribution [58] to improve over standard IPS, [27, 28] analyze
double reinforcement learning estimator that makes use of both estimates for Q function and state
density ratio. While we have not included all estimators in our current benchmark, our software
implementation is highly modular and can easily accommodate new estimators and environments.

Algorithmic approach to method selection. Using COBS, we showed how to distill a general guideline
for selecting OPE methods. However, it is often not easy to judge whether some decision criteria
are satisfied (e.g., quantifying model misspecification, degree of stochasticity, or appropriate data
size). As more OPE methods continue to be developed, an important missing piece is a systematic
technique for model selection, given a relatively high degree of variability among existing techniques.
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A Glossary of Terms

See Table 2 for a description of the terms used
in this paper.

Table 2: Glossary of terms

Acronym Term

OPE Off-Policy Policy Evaluation
X State Space
A Action Space
P Transition Function
R Reward Function
γ Discount Factor
d0 Initial State Distribution
D Dataset
τ Trajectory/Episode
T Horizon/Episode Length
N Number of episodes in D
πb Behavior Policy
πe Evaluation Policy
V Value, ex: V (x)
Q Action-Value, ex: Q(x, a)

ρij:j′ Cumulative Importance Weight,
∏min(j′,T−1)
t=j

πe(a
i
t|x

i
t)

πb(a
i
t|x

i
t)

. If j > j′ then default is ρ = 1

IPS Inverse Propensity Scoring
DM Direct Method
HM Hybrid Method
IS Importance Sampling
PDIS Per-Decision Importance Sampling
WIS Weighted Importance Sampling
PDWIS Per-Decision Weighted Importance Sampling
FQE Fitted Q Evaluation [30]
IH Infinite Horizon [33]
Q-Reg Q Regression [16]
MRDR More Robust Doubly Robst [16]
AM Approximate Model (Model Based)
Q(λ) Qπ(λ) [21]
R(λ) Retrace(λ) [37]
Tree Tree-Backup(λ) [45]
DR Doubly-Robust [26, 15]
WDR Weighted Doubly-Robust [15]
MAGIC Model And Guided Importance Sampling Combining (Estimator) [51]
Graph Graph Environment
Graph-MC Graph Mountain Car Environment
MC Mountain Car Environment
Pix-MC Pixel-Based Mountain Car Environment
Enduro Enduro Environment
Graph-POMDP Graph-POMDP Environment
GW Gridworld Environment
Pix-GW Pixel-Based Gridworld Environment
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B Ranking of Methods

A method that is within 10% of the method
with the lowest Relative MSE is counted as a
top method, called Near-top Frequency, and
then we aggregate across all experiments. See
Table 3 for a sorted list of how often the meth-
ods appear within 10% of the best method.

Table 3: Fraction of time among the top estimators
across all experiments

Method Near-top Frequency

MAGIC FQE 0.300211
DM FQE 0.236786
IH 0.190275
WDR FQE 0.177590
MAGIC Qπ(λ) 0.173362
WDR Qπ(λ) 0.173362
DM Qπ(λ) 0.150106
DR Qπ(λ) 0.135307
WDR R(λ) 0.133192
DR FQE 0.128964
MAGIC R(λ) 0.107822
WDR Tree 0.105708
DR R(λ) 0.105708
DM R(λ) 0.097252
DM Tree 0.084567
MAGIC Tree 0.076110
DR Tree 0.073996
DR MRDR 0.073996
WDR Q-Reg 0.071882
DM AM 0.065539
IS 0.063425
WDR MRDR 0.054968
PDWIS 0.046512
DR Q-Reg 0.044397
MAGIC AM 0.038055
MAGIC MRDR 0.033827
DM MRDR 0.033827
PDIS 0.033827
MAGIC Q-Reg 0.027484
WIS 0.025370
NAIVE 0.025370
DM Q-Reg 0.019027
DR AM 0.012685
WDR AM 0.006342

B.1 Decision Tree Support

Tables 4-11 provide a numerical support for the
decision tree in the main paper (Figure 2). Each
table refers to a child node in the decision tree,
ordered from left to right, respectively. For
example, Table 4 refers to the left-most child
node (propery specified, short horizon, small
policy mismatch) while Table 11 refers to the
right-most child node (misspecified, good rep-
resentation, long horizon, good πb estimate).

Table 4: Near-top Frequency among the prop-
erly specified, short horizon, small policy mis-
match experiments

DM HYBRID

DIRECT DR WDR MAGIC

AM 4.7% 4.7% 3.1% 4.7%
Q-REG 0.0% 4.7% 6.2% 4.7%
MRDR 7.8% 14.1% 7.8% 7.8%
FQE 40.6% 23.4% 21.9% 34.4%
R(λ) 17.2% 20.3% 20.3% 14.1%
Qπ(λ) 21.9% 18.8% 18.8% 17.2%
TREE 15.6% 12.5% 12.5% 14.1%
IH 17.2% - - -

IPS

STANDARD PER-DECISION

IS 4.7% 4.7%
WIS 3.1% 3.1%
NAIVE 1.6% -

Table 5: Near-top Frequency among the prop-
erly specified, short horizon, large policy mis-
match experiments

DM HYBRID

DIRECT DR WDR MAGIC

AM 20.3% 1.6% 0.0% 7.8%
Q-REG 1.6% 1.6% 3.1% 1.6%
MRDR 3.1% 1.6% 6.2% 1.6%
FQE 35.9% 14.1% 17.2% 37.5%
R(λ) 23.4% 14.1% 20.3% 23.4%
Qπ(λ) 15.6% 15.6% 14.1% 20.3%
TREE 21.9% 12.5% 18.8% 21.9%
IH 29.7% - - -

IPS

STANDARD PER-DECISION

IS 0.0% 0.0%
WIS 0.0% 1.6%
NAIVE 3.1% -
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Table 6: Near-top Frequency among the prop-
erly specified, long horizon, small policy mis-
match experiments

DM HYBRID

DIRECT DR WDR MAGIC

AM 6.9% 0.0% 0.0% 5.6%
Q-REG 0.0% 1.4% 1.4% 1.4%
MRDR 1.4% 0.0% 1.4% 2.8%
FQE 50.0% 22.2% 23.6% 50.0%
R(λ) 13.9% 12.5% 11.1% 9.7%
Qπ(λ) 20.8% 18.1% 18.1% 18.1%
TREE 2.8% 1.4% 0.0% 2.8%
IH 29.2% - - -

IPS

STANDARD PER-DECISION

IS 0.0% 0.0%
WIS 0.0% 0.0%
NAIVE 5.6% -

Table 7: Near-top Frequency among the prop-
erly specified, long horizon, large policy mis-
match, deterministic env/rew experiments

DM HYBRID

DIRECT DR WDR MAGIC

AM 3.5% 3.5% 1.8% 1.8%
Q-REG 3.5% 1.8% 0.0% 0.0%
MRDR 3.5% 1.8% 0.0% 0.0%
FQE 15.8% 17.5% 29.8% 28.1%
R(λ) 1.8% 3.5% 0.0% 0.0%
Qπ(λ) 22.8% 15.8% 38.6% 24.6%
TREE 3.5% 3.5% 1.8% 1.8%
IH 21.1% - - -

IPS

STANDARD PER-DECISION

IS 5.3% 3.5%
WIS 0.0% 8.8%
NAIVE 0.0% -

Table 8: Near-top Frequency among the prop-
erly specified, long horizon, large policy mis-
match, stochastic env/rew experiments

DM HYBRID

DIRECT DR WDR MAGIC

AM 14.6% 0.0% 0.0% 8.3%
Q-REG 4.2% 2.1% 0.0% 2.1%
MRDR 4.2% 2.1% 0.0% 0.0%
FQE 31.2% 2.1% 0.0% 25.0%
R(λ) 4.2% 6.2% 0.0% 0.0%
Qπ(λ) 2.1% 0.0% 0.0% 2.1%
TREE 4.2% 6.2% 0.0% 0.0%
IH 41.7% - - -

IPS

STANDARD PER-DECISION

IS 25.0% 4.2%
WIS 0.0% 0.0%
NAIVE 2.1% -

Table 9: Near-top Frequency among the poten-
tially misspecified, insufficient representation
experiments

DM HYBRID

DIRECT DR WDR MAGIC

AM - - - -
Q-REG 3.9% 13.7% 25.5% 6.9%
MRDR 0.0% 18.6% 15.7% 5.9%
FQE 0.0% 5.9% 13.7% 24.5%
R(λ) - - - -
Qπ(λ) - - - -
TREE - - - -
IH 6.9% - - -

IPS

STANDARD PER-DECISION

IS 10.8% 8.8%
WIS 9.8% 13.7%
NAIVE 3.9% -
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Table 10: Near-top Frequency among the po-
tentially misspecified, sufficient representation,
poor πb estimate experiments

DM HYBRID

DIRECT DR WDR MAGIC

AM 0.0% 0.0% 0.0% 0.0%
Q-REG 0.0% 0.0% 3.3% 0.0%
MRDR 13.3% 6.7% 0.0% 0.0%
FQE 0.0% 3.3% 6.7% 10.0%
R(λ) 16.7% 0.0% 6.7% 20.0%
Qπ(λ) 6.7% 0.0% 0.0% 3.3%
TREE 20.0% 0.0% 6.7% 6.7%
IH 0.0% - - -

IPS

STANDARD PER-DECISION

IS 3.3% 0.0%
WIS 0.0% 0.0%
NAIVE 0.0% -

Table 11: Near-top Frequency among the po-
tentially misspecified, sufficient representation,
good πb estimate experiments

DM HYBRID

DIRECT DR WDR MAGIC

AM 0.0% 0.0% 0.0% 2.8%
Q-REG 0.0% 0.0% 0.0% 0.0%
MRDR 0.0% 5.6% 0.0% 5.6%
FQE 8.3% 8.3% 25.0% 11.1%
R(λ) 2.8% 8.3% 8.3% 19.4%
Qπ(λ) 5.6% 5.6% 8.3% 0.0%
TREE 5.6% 8.3% 16.7% 5.6%
IH 0.0% - - -

IPS

STANDARD PER-DECISION

IS 0.0% 0.0%
WIS 0.0% 0.0%
NAIVE 0.0% -
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C Supplementary Folklore
Backup

The following tables represent the numerical
support for how horizon and policy difference
affect the performance of the OPE estimators
when policy mismatch is held constant. Notice
that the policy mismatch for table 13 and 14
are identical:

(
.124573...

.1

)100
=
(
.9
.1

)10
. What

we see here is that despite identical policy mis-
match, the longer horizon does not impact the
error as much (compared to the baseline, Table
12) as moving πe to .9, far from .1 and keeping
the horizon the same.

Table 12: Graph, relative MSE. T = 10, N =
50, πb(a = 0) = 0.1, πe(a = 0) = 0.1246.
Dense rewards. Baseline.

DM HYBRID

DIRECT DR WDR MAGIC

AM 1.9E-3 4.9E-3 5.0E-3 3.4E-3
Q-REG 2.4E-3 4.3E-3 4.2E-3 4.5E-3
MRDR 5.8E-3 8.9E-3 9.4E-3 9.2E-3
FQE 1.8E-3 1.8E-3 1.8E-3 1.8E-3
R(λ) 1.8E-3 1.8E-3 1.8E-3 1.8E-3
Qπ(λ) 1.8E-3 1.8E-3 1.8E-3 1.8E-3
TREE 1.8E-3 1.8E-3 1.8E-3 1.8E-3
IH 1.6E-3 - - -

IPS

STANDARD PER-DECISION

IS 5.6E-4 8.4E-4
WIS 1.4E-3 1.4E-3
NAIVE 6.1E-3 -

Table 13: Graph, relative MSE. T =
100, N = 50, πb(a = 0) = 0.1, πe(a = 0) =
0.1246. Dense rewards. Increasing horizon
compared to baseline, fixed πe.

DM HYBRID

DIRECT DR WDR MAGIC

AM 5.6E-2 5.9E-2 5.9E-2 5.3E-2
Q-REG 3.4E-3 1.1E-1 1.2E-1 9.2E-2
MRDR 1.1E-2 2.5E-1 2.9E-1 3.1E-1
FQE 6.0E-2 6.0E-2 6.0E-2 6.0E-2
R(λ) 6.0E-2 6.0E-2 6.0E-2 6.0E-2
Qπ(λ) 6.0E-2 6.0E-2 6.0E-2 6.0E-2
TREE 3.4E-1 7.0E-3 1.6E-3 2.3E-3
IH 4.7E-4 - - -

IPS

STANDARD PER-DECISION

IS 1.7E-2 2.5E-3
WIS 9.5E-4 4.9E-4
NAIVE 5.4E-3 -

Table 14: Graph, relative MSE. T = 10, N =
50, πb(a = 0) = 0.1, πe(a = 0) = 0.9. Dense
rewards. Increasing πe compared to baseline,
fixed horizon.

DM HYBRID

DIRECT DR WDR MAGIC

AM 6.6E-1 6.7E-1 6.6E-1 6.6E-1
Q-REG 5.4E-1 6.3E-1 1.3E0 9.3E-1
MRDR 5.4E-1 7.3E-1 2.0E0 2.0E0
FQE 6.6E-1 6.6E-1 6.6E-1 6.6E-1
R(λ) 6.7E-1 6.6E-1 9.3E-1 1.0E0
Qπ(λ) 6.6E-1 6.6E-1 6.6E-1 6.6E-1
TREE 6.7E-1 6.6E-1 9.4E-1 1.0E0
IH 1.4E-2 - - -

IPS

STANDARD PER-DECISION

IS 1.0E0 5.4E-1
WIS 2.0E0 9.7E-1
NAIVE 4.0E0 -
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D Model Selection Guidelines

For the definition of near-top frequency, see
the definition in Section 2.3. For support of the
guideline, see Table 3)

Table 15: Model Selection Guidelines.

Class Recommendation When to use Prototypical env. Near-top Freq.

Direct FQE Stochastic env, severe policy mismatch Graph, MC, Pix-MC 23.7%
Q(λ) Compute non-issue, moderate policy mismatch GW/Pix-GW 15.0%
IH Long horizon, mild policy mismatch, good kernel Graph-MC 19.0%

IPS PDWIS Short horizon, mild policy mismatch Graph 4.7%
Hybrid MAGIC FQE Severe model misspecification Graph-POMDP, Enduro 30.0%

MAGIC Q(λ) Compute non-issue, severe model misspecification Graph-POMDP 17.3%
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E Methods

Below we include a description of each of the
methods we tested. Let T̃ = T − 1.

E.1 Inverse Propensity Scoring (IPS)
Methods

Table 16: IPS methods. [15, 26]

STANDARD PER-DECISION

IS
∑N
i=1

ρi
0:T̃
N

∑T̃
t=0 γ

trt
∑N
i=1

∑T̃
t=0 γ

t ρ
i
0:t
N
rt

WIS
∑N
i=1

ρi
0:T̃
w

0:T̃

∑T̃
t=0 γ

trt
∑N
i=1

∑T̃
t=0 γ

t ρ
i
0:t
w0:t

rt

Table 16 shows the calculation for
the four traditional IPS estimators:
VIS , VPDIS , VWIS , VPDWIS . In addition,
we include the following method as well since
it is a Rao-Blackwellization [33] of the IPS
estimators:

E.2 Hybrid Methods

Hybrid rely on being supplied an action-value
function Q̂, an estimate of Q, from which one
can also yield V̂ (x) =

∑
a∈A π(a|x)Q̂(x, a).

Doubly-Robust (DR): [51, 26]

VDR =
1

N

N∑
i=1

V̂ (xi0)+

1

N

N∑
i=1

∞∑
t=0

γtρi0:t[r
i
t−Q̂(xit, a

i
t)+γV̂ (xit+1)]

Weighted Doubly-Robust (WDR): [51]

VWDR =
1

N

N∑
i=1

V̂ (xi0)+

N∑
i=1

∞∑
t=0

γt
ρi0:t

w0:t
[rit−Q̂(xit, a

i
t)+γV̂ (xit+1)]

MAGIC: [51] Given gJ = {gi|i ∈ J ⊆
N ∪ {−1}} where

gj(D) =

N∑
i=1

j∑
t=0

γt
ρi0:t

w0:t
rit+

N∑
i=1

γj+1 ρ
i
0:t

w0:t
V̂ (xij+1)−

N∑
i=1

j∑
t=0

γt(
ρi0:t

w0:t
Q̂(xit, a

i
t)−

ρi
0:T̃

w0:T̃

V̂ (xit)),

then define dist(y, Z) = minz∈Z |y − z| and

b̂n(j) = dist(gJj (D), CI(g∞(D), 0.5))

Ω̂n(i, j) = Cov(gJi (D), gJj (D))

then, for a |J |−simplex ∆|J| we can calculate

x̂∗ ∈ arg min
x∈∆|J|

xT [Ω̂n + b̂b̂T ]x

which, finally, yields

VMAGIC = (x̂∗)T gJ .

MAGIC can be thought of as a weighted aver-
age of different blends of the DM and Hybrid.
In particular, for some i ∈ J , gi represents es-
timating the first i steps of V (πe) according to
DR (or WDR) and then estimating the remain-
ing steps via Q̂. Hence, VMAGIC finds the
most appropriate set of weights which trades
off between using a direct method and a Hy-
brid.

E.3 Direct Methods (DM)

E.3.1 Model-Based

Approximate Model (AM): [26] An approach
to model-based value estimation is to directly
fit the transition dynamics P (xt+1|xt, at),
reward R(xt, at), and terminal condition
P (xt+1 ∈ Xterminal|xt, at) of the MDP us-
ing some for of maximum likelihood or func-
tion approximation. This yields a simulation
environment from which one can extract the
value of a policy using an average over rollouts.
Thus, V (π) = E[

∑T
t=1 γ

tr(xt, at)|x0 =
x, a0 = π(x0)] where the expectation is over
initial conditions x ∼ d0 and the transition
dynamics of the simulator.

E.3.2 Model-Free

Every estimator in this section will approxi-
mate Q with Q̂(·; θ), parametrized by some θ.
From Q̂ the OPE estimate we seek is

V =
1

N

N∑
i=1

∑
a∈A

πe(a|s)Q̂(si0, a; θ)

Note that EπeQ(xt+1, ·) =
∑
a∈A πe(a|xt+1)Q(xt+1, a).

Direct Model Regression (Q-Reg): [16]

Q̂(·, θ) = min
θ

1

N

N∑
i=1

T̃∑
t=0

γtρi0:t

(
Ri
t:T̃
− Q̂(xit, a

i
t; θ)

)2

Ri
t:T̃

=

T̃∑
t′=t

γt
′−tρi(t+1):t′r

i
t′

Fitted Q Evaluation (FQE): [30] Q̂(·, θ) =

limk→∞ Q̂k where

Q̂k = min
θ

1

N

N∑
i=1

T̃∑
t=0

(Q̂k−1(xit, a
i
t; θ)− yit)2

20



yit ≡ rit + γEπeQ̂k−1(xit+1, ·; θ)

Retrace(λ) (R(λ)), Tree-Backup (Tree), Qπ(λ):

[37, 45, 21] Q̂(·, θ) = limk→∞ Q̂k where

Q̂k(x, a; θ) = Q̂k−1(x, a; θ)+

Eπb [
∑
t≥0

γt
t∏

s=1

csyt|x0 = x, a0 = a]

and
yt = rt+γEπeQ̂k−1(xt+1, ·; θ)−Q̂k−1(xt, at; θ)

cs =


λmin(1, πe(as|xs)πb(as|xs) ) R(λ)

λπe(as|xs) Tree

λ Qπ(λ)

More Robust Doubly-Robust (MRDR): [16]
Given

Ωπb(x) = diag[1/πb(a|x)]a∈A − eeT

e = [1, . . . , 1]T

Ri
t:T̃

=

T̃∑
j=t

γj−tρi(t+1):jr(x
i
j , a

i
j)

and

qθ(x, a, r) = diag[πe(a
′|x)]a′∈A[Q̂(x, a′; θ)]a′∈A

− r[1{a′ = a}]a′∈A
where 1 is the indicator function, then

Q̂(·, θ) = min
θ

1

N

N∑
i=1

T̃∑
t=0

γ2t(ρi
0:T̃

)2×

ρitqθ(x
i
t, a

i
t, R

i
t:T̃

)TΩπb(x
i
t)qθ(x

i
t, a

i
t, R

i
t:T̃

)

State Density Ratio Estimation (IH): [33]

VIH =

N∑
i=1

T̃∑
t=0

γtω(sit)ρt:tr
i
t∑N

i′=0

∑T̃
t′=1 γ

t′ω(si
′
t′)ρt′:t′

ω(sit) = lim
t→∞

∑T
t=0 γ

tdπe(s
i
t)∑T

t=0 γ
tdπb(s

i
t)

where πb is assumed to be a fixed data-
generating policy, and dπ is the distribution
of states when executing π from s0 ∼ d0. The
details for how to find ω can be found in Algo-
rithm 1 and 2 of [33].
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F Environments

For every environment, we initialize the envi-
ronment with a fixed horizon length T . If the
agent reaches a goal before T or if the episode
is not over by step T , it will transition to an
environment-dependent absorbing state where
it will stay until time T . For a high level de-
scription of the environment features, see Table
1.

F.1 Environment Descriptions

F.1.1 Graph

Figure 6 shows a visualization of the Toy-
Graph environment. The graph is initial-
ized with horizon T and with absorbing state
xabs = 2T . In each episode, the agent starts
at a single starting state x0 = 0 and has two
actions, a = 0 and a = 1. At each time step
t < T , the agent can enter state xt+1 = 2t+ 1
by taking action a = 0, or xt+1 = 2t+2 by tak-
ing action a = 1. If the environment is stochas-
tic, we simulate noisy transitions by allowing
the agent to slip into xt+1 = 2t+ 2 instead of
xt+1 = 2t + 1 and vice-versa with probabil-
ity .25. At the final time t = T , the agent al-
ways enters the terminal state xabs. The reward
is +1 if the agent transitions to an odd state,
otherwise is −1. If the environment provides
sparse rewards, then r = +1 if xT−1 is odd,
r = −1 if xT−1 is even, otherwise r = 0. Sim-
ilarly to deterministic rewards, if the environ-
ment’s rewards are stochastic, then the reward
is r ∼ N(1, 1) if the agent transitions to an odd
state, otherwise r ∼ N(−1, 1). If the rewards
are sparse and stochastic then r ∼ N(1, 1) if
xT−1 is odd, otherwise r ∼ N(−1, 1) and
r = 0 otherwise.

F.1.2 Graph-POMDP

Figure 10 shows a visualization of the Graph-
POMDP environment. The underlying state
structure of Graph-POMDP is exactly the
Graph environment. However, the states are
grouped together based on a choice of Graph-
POMDP horizon length, H . This parameter
groups states into H observable states. The
agent only is able to observe among these
states, and not the underlying MDP structure.
Model-Fail [51] is a special case of this envi-
ronment when H = T = 2.

F.1.3 Graph Mountain Car (Graph-MC)

Figure 7 shows a visualization of the Toy-MC
environment. This environment is a 1-D graph-
based simplification of Mountain Car. The

agent starts at x0 = 0, the center of the val-
ley and can go left or right. There are 21 total
states, 10 to the left of the starting position and
11 to the right of the starting position, and a
terminal absorbing state xabs = 22. The agent
receives a reward of r = −1 at every timestep.
The reward becomes zero if the agent reaches
the goal, which is state x = +11. If the agent
reaches x = −10 and continues left then the
agent remains in x = −10. If the agent does
not reach state x = +11 by step T then the
episode terminates and the agent transitions to
the absorbing state.

F.1.4 Mountain Car (MC)

We use the OpenAI version of Mountain Car
with a few simplifying modifications [5, 48].
The car starts in a valley and has to go back
and forth to gain enough momentum to scale
the mountain and reach the end goal. The
state space is given by the position and ve-
locity of the car. At each time step, the car
has the following options: accelerate back-
wards, forwards or do nothing. The reward
is r = −1 for every time step until the car
reaches the goal. While the original trajectory
length is capped at 200, we decrease the ef-
fective length by applying every action at five
times before observing xt+1. Furthermore, we
modify the random initial position from being
uniformly between [−.6,−.4] to being one of
{−.6,−.5,−.4}, with no velocity. The envi-
ronment is initialized with a horizon T and
absorbing state xabs = [.5, 0], position at .5
and no velocity.

F.1.5 Pixel-based Mountain Car
(Pix-MC)

This environment is identical to Mountain Car
except the state space has been modified from
position and velocity to a pixel based represen-
tation of a ball, representing a car, rolling on a
hill, see Figure 8. Each frame ft is a 80× 120
image of the ball on the mountain. One can-
not deduce velocity from a single frame, so we
represent the state as xt = {ft−1, ft} where
f−1 = f0, the initial state. Everything else is
identical between the pixel-based version and
the position-velocity version described earlier.

F.1.6 Enduro

We use OpenAI’s implementation of Enduro-
v0, an Atari 2600 racing game. We downsam-
ple the image to a grayscale of size (84,84). We
apply every action one time and we represent
the state as xt = {ft−3, ft−2, ft−1, ft} where
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Figure 8: MC Environment,
pixel-version. The non-pixel ver-
sion involves representing the
state of the car as the position
and velocity.

Figure 9: Enduro Environment
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Figure 10: Graph-POMDP En-
vironment. Model-Fail [51] is a
special case of this environment
where T=2. We also extend the
environment to arbitrary horizon
which makes it a semi-mdp.
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Figure 11: Gridworld environ-
ment. Blank spaces indicate ar-
eas of a small negative reward,
S indicates the starting states, F
indicates a field of slightly less
negative reward, H indicates a
hole of severe penalty, G indi-
cates the goal of positive reward.

fi = f0, the initial state, for i < 0. See Figure
9 for a visualization.

F.1.7 Gridworld (GW)

Figure 11 shows a visualization of the Grid-
world environment. The agent starts at a state
in the first row or column (denoted S in the fig-
ure), and proceeds through the grid by taking
actions, given by the four cardinal directions,
for T = 25 timesteps. An agent remains in
the same state if it chooses an action which
would take it out of the environment. If the
agent reaches the goal state G, in the bottom
right corner of the environment, it transitions
to a terminal state x = 64 for the remainder
of the trajectory and receives a reward of +1.
In the grid, there is a field (denoted F) which
gives the agent a reward of −.005 and holes
(denoted H) which give −.5. The remaining
states give a reward of −.01.

F.1.8 Pixel-Gridworld (Pixel-GW)

This environment is identical to Gridworld ex-
cept the state space has been modified from
position to a pixel based representation of the
position: 1 for the agent’s location, 0 otherwise.

We use the same policies as in the Gridworld
case.

G Experimental Setup

G.1 Description of the policies

Graph, Graph-POMDP and Graph-MC use
static policies with some probability of going
left and another probability of going right, ex:
π(a = 0) = p, π(a = 1) = 1−p, independent
of state. We vary p in our experiments.

GW, Pix-GW, MC, Pixel-MC, and Enduro
all use an ε−Greedy policy. In other words,
we train a policy Q∗ (using value iteration or
DDQN) and then vary the deviation away from
the policy. Hence ε−Greedy(Q∗) implies we
follow a mixed policy π = arg maxaQ

∗(x, a)
with probability 1− ε and uniform with proba-
bility ε. We vary ε in our experiments.

G.2 Enumeration of Experiments

G.2.1 Graph

See Table 18 for a description of the parameters
of the experiment we ran in the Graph Envi-
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Table 17: Environment parameters - Full description

Environment Graph Graph-MC MC Pix-MC Enduro Graph-POMDP GW Pix-GW

Is MDP? yes yes yes yes yes no yes yes
State desc. position position [pos, vel] pixels pixels position position pixels
T 4 or 16 250 250 250 1000 2 or 8 25 25
Stoch Env? variable no no no no no no variable
Stoch Rew? variable no no no no no no no
Sparse Rew? variable terminal terminal terminal dense terminal dense dense
Q̂ Func. Class tabular tabular linear/NN NN NN tabular tabular NN
Initial state 0 0 variable variable gray img 0 variable variable
Absorb. state 2T 22 [.5,0] img([.5,0]) zero img 2T 64 zero img
Frame height 1 1 2 2 4 1 1 1
Frame skip 1 1 5 5 1 1 1 1

ronment. The experiments are the Cartesian
product of the table.

Table 18: Graph parameters

Parameters

γ .98
N 23:11

T {4, 16}
πb(a = 0) {.2, .6}
πe(a = 0) .8
Stochastic Env {True, False}
Stochastic Rew {True, False}
Sparse Rew {True, False}
Seed {10 random}
ModelType Tabular
Regress πb False

G.2.2 Graph-POMDP

See Table 19 for a description of the parameters
of the experiment we ran in the Graph-POMDP
Environment. The experiments are the Carte-
sian product of the table.

Table 19: Graph-POMDP parameters

Parameters

γ .98
N 28:11

(T,H) {(2, 2), (16, 6)}
πb(a = 0) {.2, .6}
πe(a = 0) .8
Stochastic Env {True, False}
Stochastic Rew {True, False}
Sparse Rew {True, False}
Seed {10 random}
ModelType Tabular
Regress πb False

G.2.3 Gridworld

See Table 20 for a description of the parameters
of the experiment we ran in the Gridworld En-
vironment. The experiments are the Cartesian
product of the table.

Table 20: Gridworld parameters

Parameters

γ .98
N 26:11

T 25
ε− Greedy, πb {.2, .4, .6, .8, 1.}
ε− Greedy, πe .1
Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType Tabular
Regress πb True

G.2.4 Pixel-Gridworld (Pix-GW)

See Table 21 for a description of the parameters
of the experiment we ran in the Pix-GW En-
vironment. The experiments are the Cartesian
product of the table.

Table 21: Pix-GW parameters

Parameters

γ .96
N 26:9

T 25
ε− Greedy, πb {.2, .4, .6, .8, 1.}
ε− Greedy, πe .1
Stochastic Env {True, False}
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType NN
Regress πb {True, False}

G.2.5 Graph-MC

See Table 22 for a description of the parame-
ters of the experiment we ran in the TMC En-
vironment. The experiments are the Cartesian
product of the table.
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Table 22: Graph-MC parameters

Parameters

γ .99
N 27:11

T 250

(πb(a = 0), πe(a = 0))
{(.45, .45), (.6, .6), (.45.6)
(.6, .45), (.8, .2), (.2, .8)}

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType Tabular
Regress πb False

G.2.6 Mountain Car (MC)

See Table 23 for a description of the parame-
ters of the experiment we ran in the MC En-
vironment. The experiments are the Cartesian
product of the table.

Table 23: MC parameters

Parameters

γ .99
N 27:10

T 250

ε− Greedy, (πb, πe)
{(.1, 0), (1, 0)
(1, .1), (.1, 1)}

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType {Tabular, NN}
Regress πb False

G.2.7 Pixel-Mountain Car (Pix-MC)

See Table 24 for a description of the parameters
of the experiment we ran in the Pix-MC Envi-
ronment. The experiments are the Cartesian
product of the table.

Table 24: Pix-MC parameters

Parameters

γ .97
N 512
T 500

ε− Greedy, (πb, πe)
{(.25, 0), (.1, 0)
(.25, .1)}

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType {Tabular, NN}
Regress πb False

G.2.8 Enduro

See Table 25 for a description of the parameters
of the experiment we ran in the Enduro Envi-
ronment. The experiments are the Cartesian
product of the table.

Table 25: Enduro parameters

Parameters

γ .9999
N 512
T 500

ε− Greedy, (πb, πe)
{(.25, 0), (.1, 0)
(.25, .1)}

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 random}
ModelType {Tabular, NN}
Regress πb False

G.3 Representation and Function Class

For the simpler environments, we use a tab-
ular representation for all the methods. AM
amounts to solving for the transition dynamics,
rewards, terminal state, etc. through maximum
likelihood. FQE, Retrace(λ), Qπ(λ), and Tree-
Backup are all implemented through dynamics
programming with Q tables. MRDR and Q-
Reg used the Sherman Morrison [47] method
to solve the weighted-least square problem, us-
ing a basis which spans a table.

In the cases where we needed function approxi-
mation, we did not directly fit the dynamics for
AM; instead, we fit on the difference in states
P (x′ − x|x, a), which is common practice.

For the MC environment, we ran experiments
with both a linear and NN function class. In
both cases, the representation of the state was
not changed and remained [position, velocity].
The NN architecture was dense with [16,8,4,2]
as the layers. The layers had relu activations
(except the last, with a linear activation) and
were all initialized with truncated normal cen-
tered at 0 with a standard deviation of 0.1.

For the pixel-based environments (MC, En-
duro), we use a convolutional NN. The ar-
chitechure is a layer of size 8 with filter (7,7)
and stride 3, followed by maxpooling and a
layer of size 16 with filter (3,3) and stride 1, fol-
lowed by max pooling, flattening and a dense
layer of size 256. The final layer is a dense
layer with the size of the action space, with a
linear activation. The layers had elu activations
and were all initialized with truncated normal
centered at 0 with a standard deviation of 0.1.
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The layers also have kernel L2 regularizers
with weight 1e-6.

When using NNs for the IH method, we used
the radial-basis function and a shallow dense
network for the kernel and density estimate
respectively.

G.4 Datasets

Datasets are not included as part of COBS
since our benchmark is completely simulation
based. To recreate any dataset, select the appro-
priate choice of environment parameters from
the experiments enumerated in Section G.2.

G.5 Choice of hyperparameters

Many methods require selection of conver-
gence criteria, regularization parameters, batch
sizes, and a whole host of other hyperparam-
eters. Often there is a trade-off between com-
putational cost and the accuracy of the method.
Hyperparameter search is not feasible in OPE
since there is no proper validation (like game
score in learning). See Table 12 for a list of
hyperparameters that were chosen for the ex-
periments.
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Figure 12: Hyperparameters for each model by
Environment

Method Parameter Graph TMC MC Pix-MC Enduro Graph-POMDP GW Pix-GW

AM

Max Traj Len T T 50 50 - T T T
NN Fit Epochs - - 100 100 - - - 100
NN Batchsize - - 32 32 - - - 25
NN Train size - - .8 .8 - - - .8
NN Val size - - .2 .2 - - - .2
NN Early Stop delta - - 1e-4 1e-4 - - - 1e-4

Q-Reg

Omega regul. 1 1 - - - 1 1 -
NN Fit Epochs - - 80 80 80 - - 80
NN Batchsize - - 32 32 32 - - 32
NN Train size - - .8 .8 .8 - - .8
NN Val size - - .2 .2 .2 - - .2
NN Early Stop delta - - 1e-4 1e-4 1e-4 - - 1e-4

FQE

Convergence ε 1e-5 1e-5 1e-4 1e-4 1e-4 1e-5 4e-4 1e-4
Max Iter - - 160 160 600 - 50 80
NN Batchsize - - 32 32 32 - - 32
Optimizer Clipnorm - - 1. 1. 1. - - 1.

IH
Quad. prog. regular. 1e-3 1e-3 - - - 1e-3 1e-3 -
NN Fit Epochs - - 10001 10001 10001 - - 1001
NN Batchsize - - 1024 128 128 - - 128

MRDR

Omega regul. 1 1 - - - 1 1 -
NN Fit Epochs - - 80 80 80 - - 80
NN Batchsize - - 1024 1024 1024 - - 32
NN Train size - - .8 .8 .8 - - .8
NN Val size - - .2 .2 .2 - - .2
NN Early Stop delta - - 1e-4 1e-4 1e-4 - - 1e-4

R(λ)

λ .9 .9 .9 - - .9 .9 .9
Convergence ε 1e-3 2e-3 1e-3 - - 1e-3 2e-3 1e-3
Max Iter 500 500 - - - 500 50 -
NN Fit Epochs - - 80 - - - - 80
NN Batchsize - - 4 - - - - 4
NN Train Size - - .03 - - - - .03
NN ClipNorm - - 1. - - - - 1.

Qπ(λ)

λ .9 .9 .9 - - .9 .9 .9
Convergence ε 1e-3 2e-3 1e-3 - - 1e-3 2e-3 1e-3
Max Iter 500 500 - - - 500 50 -
NN Fit Epochs - - 80 - - - - 80
NN Batchsize - - 4 - - - - 4
NN Train Size - - .03 - - - - .03
NN ClipNorm - - 1. - - - - 1.

Tree

λ .9 .9 .9 - - .9 .9 .9
Convergence ε 1e-3 2e-3 1e-3 - - 1e-3 2e-3 1e-3
Max Iter 500 500 - - - 500 50 -
NN Fit Epochs - - 80 - - - - 80
NN Batchsize - - 4 - - - - 4
NN Train Size - - .03 - - - - .03
NN ClipNorm - - 1. - - - - 1.
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H Additional Supporting Figures

Figure 13: Enduro DM vs IPS. πb is a policy
that deviates uniformly from a trained policy
25% of the time, πe is a policy trained with
DDQN. IH has relatively low error mainly due
to tracking the simple average, since the kernel
function did not learn useful density ratio. The
computational time required to calculate the
multi-step rollouts of AM, Retrace(λ), Qπ(λ),
Tree-Backup(λ) exceeded our compute budget
and were thus excluded.

Figure 14: MC comparison. N = 256. πb is a
uniform random policy, πe is a policy trained
with DDQN

Figure 15: Enduro DM vs HM. πb is a policy
that deviates uniformly from a trained policy
25% of the time, πe is a policy trained with
DDQN.

Figure 16: Comparison of Direct methods’ per-
formance across horizon and number of trajec-
tories in the Toy-Graph environment. Small
policy mismatch under a deterministic environ-
ment.

Figure 17: (Graph domain) Comparing DMs
across horizon length and number of trajecto-
ries. Large policy mismatch and a stochastic
environment setting.

Figure 18: Comparing DM to DR in a stochas-
tic environment with large policy mismatch.
(Graph)
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Figure 19: Comparison between FQE, IH and
WIS in a low data regime. For low policy mis-
match, IPS is competitive to DM in low data,
but as the policy mismatch grows, the top DM
outperform. Experiments ran in the Gridworld
Environment.

Figure 20: Comparison between IPS methods
and IH with dense vs sparse rewards. Per-
Decision IPS methods see substantial improve-
ment when the rewards are dense. Experi-
ments ran in the Toy-Graph environment with
π(a = 0) = .6, πe(a = 0) = .8

Figure 21: Exact vs Estimated πb. Ex-
act πb = .2−Greedy(optimal), πe =
.1−Greedy(optimal). Min error per class.
(Pixel Gridworld, deterministic)

Figure 22: Exact vs Estimated πb. Exact
πb =uniform, πe = .1−Greedy(optimal). Min
error per class. (Pixel Gridworld, determinis-
tic)

Figure 23: Hybrid Method comparison.
πb(a = 0) = .2, πe(a = 0) = .8. Min er-
ror per class. (Graph-MC)

Figure 24: Hybrid Method comparison.
πb(a = 0) = .8, πe(a = 0) = .2. Min er-
ror per class. (Graph-MC)
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Figure 25: Hybrid Method comparison.
πb(a = 0) = .6, πe(a = 0) = .6. Min er-
ror per class. (Graph-MC)

Figure 26: Hybrid Method comparison. Ex-
act πb = .2−Greedy(optimal), πe =
.1−Greedy(optimal). Min error per class.
(Pixel Gridworld)

Figure 27: Hybrid Method compar-
ison. πb = .8−Greedy(optimal),
πe = .1−Greedy(optimal). Min error
per class. (Pixel Gridworld)

Figure 28: Class comparison with unknown
πb. At first, HM underperform DM be-
cause πb is more difficult to calculate lead-
ing to imprecise importance sampling esti-
mates. Exact πb = .2−Greedy(optimal),
πe = .1−Greedy(optimal). Min error per class.
(Pixel Gridworld, stochastic env with .2 slip-
page)

Figure 29: Class comparison with unknown
πb. At first, HM underperform DM be-
cause πb is more difficult to calculate lead-
ing to imprecise importance sampling esti-
mates. Exact πb = .6−Greedy(optimal),
πe = .1−Greedy(optimal). Min error per class.
(Pixel Gridworld, stochastic env with .2 slip-
page)
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Figure 30: Class comparison with unknown
πb. At first, HM underperform DM because
πb is more difficult to calculate leading to im-
precise importance sampling estimates. Exact
πb =uniform, πe = .1−Greedy(optimal). Min
error per class. (Pixel Gridworld, stochastic
env with .2 slippage)

Figure 31: AM Direct vs Hybrid comparison
for AM. (Gridworld)

Figure 32: FQE Direct vs Hybrid comparison.
(Gridworld)

Figure 33: MRDR Direct vs Hybrid compari-
son. (Gridworld)

Figure 34: Q-Reg Direct vs Hybrid compari-
son. (Gridworld)

Figure 35: Qπ(λ) Direct vs Hybrid compari-
son. (Gridworld)

Figure 36: Retrace(λ) Direct vs Hybrid com-
parison. (Gridworld)

Figure 37: Tree-Backup Direct vs Hybrid com-
parison. (Gridworld)
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Figure 38: DR comparison with
πb = .2−Greedy(optimal), πe =
1.−Greedy(optimal). (Pixel Gridworld)

Figure 39: WDR comparison with
πb = .2−Greedy(optimal), πe =
1.−Greedy(optimal). (Pixel Gridworld)

Figure 40: MAGIC comparison
with πb = .2−Greedy(optimal),
πe = 1.−Greedy(optimal). (Pixel Grid-
world)

Figure 41: DR comparison with
πb = .8−Greedy(optimal), πe =
1.−Greedy(optimal). (Pixel Gridworld)

Figure 42: WDR comparison with
πb = .8−Greedy(optimal), πe =
1.−Greedy(optimal). (Pixel Gridworld)

Figure 43: MAGIC comparison
with πb = .8−Greedy(optimal),
πe = 1.−Greedy(optimal). (Pixel Grid-
world)
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I Complete Results

For tables of the complete results of the ex-
periments, please see the COBS github page:
https://github.com/clvoloshin/COBS.
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